Private digital monies must be secure against computing advances to achieve longevity. The design and issuance of a cryptocurrency ledger utilising hash-based digital signatures which are resistant to classical and quantum computing attack is presented.
1 Introduction
The concept of a peer-to-peer internet ledger of value, recorded as a blockchain and secured by proof of work was first reported in 2008[11]. Bitcoin remains the most widely used cryptocurrency to date. Hundreds of similar cryptocurrency ledgers have been subsequently created but with few exceptions they rely on the same elliptic curve public-key cryptography (ECDSA) to generate digital signatures which allow transactions to be verified securely. The most commonly used signature schemes today such as ECDSA, DSA and RSA are theoretically vulnerable to quantum computing attack. It would be valuable to explore the design and construction of a quantum resistant blockchain ledger to counter the potential advent of a sudden non-linear quantum computing advance.