
Sylo Protocol: Secure Group Messaging
Felix Schlitter John Carlo San Pedro Paul Freeman Callum Lowcay

March 4, 2020

Abstract
Privacy concerns, data collection, and hacking have
driven demand for secure decentralised applica-
tions. Meanwhile, centralised social apps, such
as WhatsApp, Instagram, and Facebook Messen-
ger are some of the most used apps in the world.
Development of social decentralised applications,
those which include a feature set comparable to
their centralised counterparts, is at the forefront
of a larger decentralisation movement, but comes
with it a unique set of challenges. We present
the Sylo Protocol as a novel, decentralised, peer-
to-peer group messaging protocol upon which pow-
erful decentralised applications are built. The pro-
tocol provides the security necessary to maintain
shared group state through the use of eventually-
consistent operation logs.

1 Introduction
Messaging is a fundamental component of our
growing digital landscape and the security of our
communication is of vital importance. Secure mes-
saging protocols (SMPs) were created to help en-
sure messaging is performed consistently and se-
curely. Although a relatively recent technology,
SMPs are fundamental to the online experience of
today and have already established a strong his-
tory[19].

For many years, reliance on central authorities
to oversee secure communication was an acceptable
standard practice. A generation of applications has
been built on the centralised model and when user
data is sold or stolen, it is often tolerated as a flaw
in an otherwise invaluable service. Today, many are
scrutinising what is actually being done with these
vast data stores and how safe it is in the hands of
a few titan technology companies.

Research into decentralised technologies has pro-
vided an alternative to centralising user data. To
serve a future where users are in control of their
data, we require a new generation of decentralised
applications built on a peer-to-peer, secure mes-
saging protocol. Additionally, the protocol must
provide demonstrated service at scale, with a user
experience that minimises compromise.

1.1 Decentralised
If users are to have any semblance of authority over
their data, it seems mandatory to provide users
with a messaging protocol built on decentralisa-
tion and peer-to-peer (P2P) technology. Many of
today’s most successful protocols are still reliant
on the presence of servers, operated by untrusted
sources. End-to-end encryption (E2EE) using Sig-
nal, or a similar protocol, solves the problem of
protecting the data within messages, but the flow
of data across these centralised servers is full of
metadata and the field of data mining is quickly
learning how to extract valuable personal data from
this unprotected resource.

Centralisation also restricts users’ ability to self
organise and create their own networks to circum-
vent disasters or censorship. When applications are
reliant on a central authority, this provides an ob-
vious attack point for bad actors wishing to dis-
rupt services. By decentralising, attacks can be
made more costly (or disincentivised completely),
and a service’s ability to survive catastrophic cir-
cumstances can be greatly improved.

1.2 Peer-to-Peer
A resilient group messaging protocol would benefit
from the ability to send messages directly to in-
tended peers, without the danger of being attacked

1

by entities along the travel path. P2P communi-
cation is a proven method for combating these at-
tacks.

In P2P communication, data is sent directly to
another peer by connecting via their Internet Pro-
tocol (IP) address. Combined with E2EE, this pro-
cess is a well establish method for data transport.
A P2P network can provide resiliency to many net-
work attacks, as it does not inherently depend on
intermediaries to perform messaging.

1.3 Scale and User Experience
Arguably one of the most important features of a
group messaging protocol is its ability to survive
as a messaging app in the real world. Consumers
demand decentralised applications with a compa-
rable user experience to their centralised counter-
parts. Sacrificing user experience for improved pri-
vacy may have a niche market, but the bulk of the
market using the top social media apps is not will-
ing to trade user experience for privacy.

For example, a messaging app built entirely on
a P2P network may place an upper bound on the
overall user experience. To rise above this bound-
ary, to an experience that rivals centralised mes-
saging apps, there is opportunity for an alternative
networks to facilitate decentralised communication.

A valuable decentralised group messaging proto-
col is therefore one which not only achieves the goal
discussed so far, but is able to provide it at scale,
and with the user experience consumers have grown
to expect.

1.4 Overview
The Sylo Protocol is a group messaging protocol
targeted at a decentralised peer-to-peer network.
Group state and the group’s operation log is man-
aged by members of the group without relying
on external entities to support state replication or
synchronisation. Messages are distributed directly
over P2P connections and can also be supported
by decentralised networks providing additional ser-
vices. Operation logs are eventually consistent with
no direct requirement for a consensus mechanism,
such as a blockchain. Peers are assumed to be on-
line infrequently and only for short durations, as is
typical for most mobile applications. The protocol
is highly tolerant of frequent asynchronous and/or

concurrent operations while still being aware of,
and minimising, the overall attack surface.

The protocol has already been demonstrated at
scale, supporting hundreds of thousands of users.
The Sylo mobile group messaging and smart wal-
let application has been well adopted and provides
a similar experience to other leading social media
apps.

2 Background
Historically, messaging has mostly been performed
using instant messaging, short message service
(SMS), and messaging apps. Today, the space is
mostly dominated by messaging apps. Typically,
messaging apps are designed for a specific messag-
ing protocol. Many protocols for messaging are cur-
rently available or under development that attempt
to address the privacy, security, interoperability,
and robustness concerns associated with centralised
messaging services. This section offers a brief re-
view of recent developments in this space.

2.1 Encryption
One approach to improving privacy and security
in messaging protocols is to employ end-to-end en-
cryption. E2EE schemes for messaging protocols
are expected to have three properties: confidential-
ity, forward secrecy, and repudiability [3].

2.1.1 Confidentiality

Only the intended recipient of a message should
be able to read it. Confidentiality is achieved by
encrypting messages with keys that are known to
the sender and recipient, but not to the provider of
the messaging app.

2.1.2 Forward Secrecy

Secret keys can be lost or compromised, especially
in large groups. Strong encryption protocols should
be resistant to compromised secret keys and, ide-
ally, recover to a secure state. This ensures that
messaging can be secure even when an encrypted
conversation continues for a long time. Common
encryption protocols for email such as Pretty Good
Privacy (PGP) [4] do not have this property since
they use long-lived encryption keys. If an attacker

2

can compromise the sender’s PGP encryption key,
then they can decrypt all of the senders past and
future messages.

2.1.3 Repudiability

The sender of a message must be able to prove their
identity to the recipient, and the recipient must be
able to prove that the message was not altered dur-
ing transit. Repudiability ensure that the sender’s
identity is verifiable only to the recipient [3].

One non-repudiable authentication method is to
provide a digital signature with each message, as
in PGP. While this allows a recipient to verify the
identity of a sender, it also exposes the sender’s
identity to any third party that can intercept the
messages, creating a privacy risk for the messaging
protocol.

The properties of forward secrecy and repudi-
ability can be achieved by encrypting messages
with short-lived keys derived through a suitable key
agreement protocol. The Signal protocol [10][9] is
a popular implementation of this idea.

The Signal protocol is used by several centralised
messaging apps including the Signal application it-
self, WhatsApp [23], Facebook Messenger [11], and
Skype [18]. Telegram, another centralised messag-
ing app, uses a home-grown E2EE protocol called
MTProto [12].

While end-to-end encryption is necessary to pro-
tect users from eavesdropping, it does not prevent
other attacks. Accounts on centralised services are
vulnerable to hijacking. Additionally, centralised
services may suffer denial of service attacks, out-
ages due to technical problems, or they may be
blocked outright. When a centralised service is
compromised, shut down, or otherwise becomes un-
available, then users will no longer be able to com-
municate securely through that service. Network
effects associated with centralised services make it
difficult for users to migrate to other services, in-
creasing the risk to users of losing connectivity with
their contacts.

2.2 Peer-to-Peer Communication
Peer-to-peer systems avoid centralisation by allow-
ing users to communicate directly with each other.
A server is not required to mediate the exchange.
However, when two peers are communicating over

the Internet, there may be any number of routers or
other middleware devices along the route between
the two peers. End-to-end encryption with forward
secrecy and repudiability is thus required to ensure
privacy in P2P systems.

There are many technical challenges associated
with P2P systems. Most networks use Network Ad-
dress Translation (NAT) which makes it difficult
for devices on those networks to accept incoming
connections. Most consumer devices are assigned
network addresses dynamically, so a mechanism is
required to locate peers and confirm their iden-
tity. Efficient broadcasting of messages (required
for group messaging) is difficult without a network
of servers. These challenges have slowed the devel-
opment of P2P applications.

Recently, however, there has been a resurgence
of interest in P2P systems. Algorithms for peer dis-
covery, routing, and NAT traversal are now avail-
able in open source libraries such as libp2p. Ap-
plications built on this technology include Textile
for social data storage, and Berty, a P2P secure
messaging protocol built on IPFS [2].

Blockchains such as Ethereum are synchronised
peer-to-peer, and there has been some interest in
reusing these protocols for other applications. Sta-
tus, for example, uses Ethereum’s whisper protocol.
The whisper protocol is vague and poorly speci-
fied [5]. It appears to work by encrypting messages
so that only the intended recipients can recognise
and decode those messages, then distributing those
messages to every peer on the network. Bloom fil-
ters are employed in an attempt to reduce the band-
width required to distribute all these messages, but
there is evidence that this protocol will not scale to
more than a few thousand users [22].

Authenticating users’ identities is a particularly
important issue in peer-to-peer systems. In P2P
systems, unlike most centralised services, there is
no central authority to authenticate users’ identi-
ties. The usual solution is for users to directly au-
thenticate each other using public key cryptogra-
phy. This approach is implemented in Scuttlebutt,
a protocol for asynchronous social networking ap-
plications. Berty uses a similar scheme.

Peer-to-peer authentication requires users to
manage their own identity keys. If a user’s iden-
tity keys are lost or compromised, their identity is
also lost, without any possibility of recovery. This
is in contrast to a centralised service where a user

3

https://libp2p.io
https://docs.textile.io/
https://berty.tech/
https://status.im
https://status.im
https://scuttlebutt.nz/

may be able to recover a lost or stolen account by
providing identifying information to their service
provider.

2.3 Federation
Federated networks are a middle-ground between
centralised services and peer-to-peer networks. Un-
like peer-to-peer networks, federated networks do
make a distinction between client and server de-
vices. Each user must create an account on a server.
When a user wants to send a message to another
user, their client device first sends the message to
the server that hosts their account, then that server
forwards the message on to the recipient’s client de-
vice. In a federated system, the sender and the re-
cipient of a message need not have accounts on the
same server. The servers exchange message traffic
with each other through open protocols. Anyone
can set up a new server and add it to the federa-
tion.

A familiar example of a federated network is
email. A user can create an email address with
any provider, then send emails to any other email
user even if the recipient is using a different email
provider.

Two prominent federated networks for messag-
ing are Extensible Messaging and Presence Proto-
col (XMPP) [14] and the more recent Matrix [1].

XMPP is a minimal protocol that specifies how
to establish, authenticate, and encrypt streams for
the near-real-time exchange of Extensible Markup
Language (XML) data [14]. Messaging functional-
ity is provided as an extension [15]. XMPP also
has extensions for group conversations [16] and
E2EE [20].

Matrix, on the other hand, specifies a protocol
for securely replicating sequences of events between
different servers. In this paradigm, a message is an
event that needs to be replicated from the sender’s
server to the recipient’s server. Group conversa-
tions are supported by replicating messages to all
of the servers for all of the users in the chat group.
Matrix supports E2EE through their Megolm [6]
protocol, which is derived from an early version of
the Signal protocol.

Federated networks provide the interoperability
that is lacking in centralised services. They also
give users the freedom to host their identity infor-
mation with a provider that they trust, rather than

forcing all users to have an account with the same
service provider. Federated networks also avoid the
technical challenges of peer-to-peer applications. It
is easier to develop feature-rich client applications
for federated networks: examples include Riot for
Matrix and Conversations for XMPP.

However, federation does not solve all of the
problems of centralised instant messaging. There is
evidence that federated systems tend towards cen-
tralisation over time [13]. Gmail has become by far
the largest provider for personal email addresses,
for example. Another danger is that providers in
a federated network may opt-out of the federation
when they become large enough to be sustained by
their own network effects. Facebook, Google, and
WhatsApp all supported XMPP federation in ear-
lier versions of their instant messaging services, but
have since dropped it.

3 Goals
3.1 Decentralised
Sylo Protocol does not rely on the existence of any
centralised infrastructure to perform secure group
messaging. All required operations can be per-
formed in a P2P setting. Therefore, the only re-
quirement of Sylo Protocol is a network capable of
delivering P2P messages. The Sylo Network[21] is
an example of a decentralised network providing
P2P message delivery.

3.2 Secure and Confidential
Sylo Protocol aims to provide a high level of se-
curity and confidentiality by purposely removing
itself from the equation. Since everything hap-
pens in a peer-to-peer setting, state and state tran-
sitions are propagated autonomously through the
Sylo Network. Aside from removing the interme-
diaries, however, Sylo Protocol also goes to great
length to protect communications and profiles in
the unlikely event that a single message or session
key gets compromised by responsibly securing all
communications using Signal Protocol.

3.3 Highly Performant
In order to be adopted, decentralised messaging
apps need to provide a user experience that meets

4

https://matrix.org/
https://about.riot.im
https://conversations.im

or exceeds existing centralised competitors. Cen-
tralised apps can leverage servers to perform ex-
pensive computations, but in decentralised setting,
messaging apps must perform the same tasks on
the clients device, making performance a first-class
feature.

It is therefore expected that the Sylo Protocol
will consume a reasonable amount of CPU, mem-
ory, and bandwidth on the user’s device.

3.4 Feature Rich

As with application performance, the Sylo Proto-
col will only see wide adoption if the experience
meets or exceeds what is currently available and
in use by the target audience. Hence, Sylo Proto-
col aims to provide a feature set that is capable of
matching user expectations for a centralised group
secure messaging protocol, while providing a decen-
tralised, P2P experience.

3.5 Fault Tolerant

By the very nature of how software operates and in-
tegrates, failure is inevitable. In fact, shifting busi-
ness logic from central servers onto clients them-
selves only pronounces the need for robust and re-
sponsible fault management. Recovering from dis-
aster is not the responsibility of a dedicated opera-
tions team, but that of the very application itself.

Fault-tolerance and recovery must be a first-class
feature that is deeply ingrained in all technical de-
sign decisions within the Sylo Protocol.

3.6 Resilient

In the spirit of being generally fault-tolerant, it
is assumed that the messaging app itself will be
operating infrequently and only for short dura-
tions. Similarly, network connections to peers are
assumed to be slow, rarely available, and highly
volatile. Rather than waiting for network connec-
tions, state changing operations should be sched-
uled and performed when possible during network
uptime.

Sylo IK Sylo ID
multihash

Profile State

 via

Signal User Id

Seed

 derive

Signal Device Id

Device
copy Sylo IK

random Device ID
random Signal IK
random Host IK

Libp2p Peer Id

Figure 1: The Sylo Identity

4 Sylo Users

4.1 Identity

The identity used by the Sylo Protocol is a pub-
lic/private key-pair derived from a mnemonic seed
phrase. It is referred to as the Sylo Identity Key
(IK).

The Sylo IK is the single most important piece
of information a user must safeguard from both be-
ing lost and being compromised. A lost Sylo IK is
irrecoverable and a compromised Sylo IK is irre-
vocable. The derived Sylo IK should never leave
the user’s device under normal operation. When
not in use, the Sylo IK should be symmetrically
encrypted, and stored using the target platform’s
most appropriate means of doing so.

It is advised to store the mnemonic seed phrase
underpinning the Sylo IK on an alternative medium
altogether, as it may be required when configuring
an additional device.

5

4.1.1 Details

The Sylo IK employs a Edwards-curve Digital Sig-
nature Algorithm (EdDSA) scheme with Ed255191

parameters [7]. Ed25519 has the following attrac-
tive properties:

High performance The signature scheme uses a
32 byte public key and a 64 byte signature, leading
to high performance across a variety of platforms.
This makes the scheme suitable to work on mobile
and similarly constrained platforms.

Asymmetric encryption Key-pairs generated
for Ed25519 can conveniently be converted for use
with X25519, which is a Elliptical Curve Diffie-
Hellman scheme, employed by the Sylo Protocol
for asymmetric encryption.

4.2 Profile
User profiles are either private or public, and users
will typically have one of each. At the application-
level, the profiles may be extended to contain ap-
plication or user-defined values.

4.2.1 Public Profiles

Public profiles serve as a mechanism to actively ad-
vertise and learn self-proclaimed information about
other peers. The application is most responsible
for the public profiles, and should determine poli-
cies regarding the handling of keys for any specific
application-level concern. The operations log asso-
ciated with the public profile is discussed further in
Section 5.6.1.

4.2.2 Private Profile

Users maintain their own private profile as a way
to synchronise profile data between their devices.
The private profile is a commutative replicated data
type (CmRDT) operation log. All keys and values
in the log are symmetrically encrypted using the
Sylo IKSK. The Sylo Protocol uses the private pro-
file internally to facilitate the automatic synchro-
nisation of group membership, device ownership,

1Ed25519 is an EdDSA signature scheme using SHA-512
(SHA-2) and Curve25519

and for managing contacts. The operation log as-
sociated with the private profile is discussed further
in Section 5.6.2.

Replication Replication of the private profile is
challenging, since users will not regularly be ex-
pected to be using multiple devices simultaneously.
Additionally, there is no direct incentive for peers
on the network to help propagate a private pro-
file. In a P2P setting, users may need to manually
bring multiple devices onto the network to initiate
the sync. Alternatively, users could rely on an in-
centivised service built into the Sylo Network.

4.3 Device
Users may operate one or more devices. Ownership
over a device is claimed via entries maintained in
the user’s profile log.

Operating a device provides the user with the
following capabilities:

Connecting to peers on the Sylo Network A
device maps onto a Host Identity Key. P2P com-
munication within the Sylo Network happens ex-
clusively in terms of these host keys. The public
key acts as a unique Device ID. The Host IK not
only provides a means for authentication, but also
plays a critical role in establishing a shared secret
used to provide secure P2P connections.

End-to-end encryption A device maps onto a
Signal IK used for end-to-end encryption. Though
communication is primarily peer to peer, content
may be stored outside of the user’s device for asyn-
chronous retrieval. This leads to a need for an ad-
ditional layer of encryption. The Signal IK is gen-
erated randomly during device setup. The Sylo IK,
in combination with the Device ID, derives a valid
Signal Protocol address which is used for establish-
ing Signal Protocol sessions between peers’ devices.

4.3.1 Device Initialisation

A device is comprised of the following components:

The Host Identity Key A randomly generated
key-pair used for P2P communication on the
Sylo Network.

6

The Signal Identity Key A randomly gener-
ated key-pair used as the E2EE Signal Pro-
tocol identity key for asynchronous exchange
of information.

The Device ID An identifier derived from the
public key of the Host. Identifies a particu-
lar device owned by a user.

Registering a device is performed by creating the
necessary IKs and then appending an entry in the
operation log for the peer’s private profile. The
operation log entry advertises public key values as
a device operated under the user’s Sylo IK.

4.3.2 Device Security

A device represents any unique instance of a user
on the Sylo Network. For example, a user could
operate a mobile and desktop client simultaneously.
For improved security, it’s important to use device
specific keys for the Host IK and the Signal IK, and
for these keys to be distinct from the global Sylo
IK. This ensures that compromising a device’s keys
will isolate the damage to that particular device.

Similar to the Sylo IK, it is the application devel-
oper’s responsibility to store these keys securely.

5 Operation Logs
A fundamental problem that exists in distributed
systems is handling mutations on some shared
state, and synchronising that state across each ac-
tor.

Consider a simple example where Alice and Bob
wish to add and remove items from the same list.
It’s easy to understand that the state of the final
list will be dependent on the order of the operations
applied. For traditional applications, a centralised
actor, such as a server, is responsible for coordinat-
ing these mutations, essentially acting as a source
of canonical truth for the final state. In the dis-
tributed setting, Alice and Bob each maintain their
own view of the list, and need to exchange messages
frequently to improve state consistency. Not only
would this be untenable in the decentralised, P2P
environment of the Sylo Network, but an ad-hoc
approach to synchronisation could lead to conflicts
in state. This severely impacts the user experience,
and potentially exposes opportunities for misplay.

In order to facilitate rich application features,
such as user profiles or groups, the Sylo Protocol
employs the use of operation logs.

5.1 Concepts
Before describing the operation log in detail, it will
be helpful to define some of the common terminol-
ogy.

5.1.1 Directed Acyclic Graph

Operation logs can be mapped to a directed acyclic
graph (DAG), where the nodes contain the data of
operations and the referenced operations map to
outgoing edges. Operations can only reference ex-
isting operations, so the graph is directed. Opera-
tions cannot reference themselves, so the graph is
also acyclic.

Once an operation has been appended to an op-
eration log, it is immutable. The data within the
operation cannot be changed and the references to
other operations cannot be altered. An immutable
sub-DAG of operations extending to the root op-
eration can be defined for any operation node by
following edges recursively until the root operation
is reached.

5.1.2 Lamport Clock

A Lamport clock[8] is used to provide additional
ordering requirements to the operation log. Peers
order operations by assigning each new operation
with a Lamport clock values stepped according to
the maximum clock value of all nodes pointed to
by outgoing edges.

Operations with improperly stepped values
should be rejected by peers. We assume that the
first operation in the log will have a clock value of
0. If the latest operation in the log is at clock n,
we can infer that there should exist at least one
operation with every clock value 0 ≤ c ≤ n in the
operation log.

5.1.3 Headset

The headset of an operation log is the leaf set2 of
operations in the current DAG. The operations in

2The leaf set of a DAG is the set of nodes without any
incoming edges.

7

the headset are the most recent operations known
within the current state of the operation log and
ordering of the operations in the headset cannot be
performed3.

5.2 Operation Log Model
An operation log is modeled after a conflict-free
replicated data type (CRDT). CRDTs are an ap-
proach to replicating state amongst distributed
peers that guarantees strong eventual consistency
(SEC)4, avoiding the need for frequent remote syn-
chronisation [17]. In particular, operation logs are
a CmRDT, with the main components to consider
being:

• A state, or data structure, which is to be repli-
cated and consistent amongst each peer.

• A defined set of mutations on the state, each
with its own parameters. Mutations must be
commutative. This ensures that the order in
which they are applied will have no bearing on
the final state.

• A function to apply a mutation given an exist-
ing state, returning a new state. This function
should be side-effect free, only considering the
current state and the parameters given to it.

Having a commutative set of mutations allows
users to make changes to their local state without
needing to be in constant coordination with other
peers. This is critical for the P2P Sylo Network,
where bandwidth usage should be minimal, and
peers are expected to frequently drop their connec-
tions. Modeling the replicated state as a CRDTs
allows users to converge on the same state asyn-
chronously. With the CmRDT properties in mind,
an operation log can be defined to be a

• A directed acyclic graph, where each vertex
represents an operation from an operation log
scheme.

3An ordering may still be possible using information con-
tained within the node, but this is left to the application.

4Strong eventual consistency informally guarantees that,
given enough time, any two nodes will converge at the same
set of updates and, regardless of the order the updates are
received, both peers will compute the same state.

• An append function, acting as the sole muta-
tion on the CmRDT. The parameter to the ap-
pend function must be a valid operation from
the operation log scheme.

• An insertion function, using the defined links
in the operation to appropriately insert it into
the DAG.

Any two peers that have inserted the same set of
operations, regardless of order, will form the same
DAG. The reachability relationship of the DAG
provides a partial ordering of the operations. With
the addition of a conflict resolution strategy, con-
current operations can be resolved to achieve a total
ordering of the operations.

An application can leverage the properties of the
conflict-free replicated DAG to deterministically re-
duce the operations to a secondary state. By hav-
ing an operation log that can be replicated in such
a way amongst peers, the Sylo Protocol is able to
provide custom user profiles and group membership
in a distributed setting.

5.3 Transformations
The operation log is “append-only”, and therefore
has an append function. An insert function is also
provided. The two functions differ in their restric-
tions. Append should be applied locally by a peer to
add a new operation, with links and a clock value,
to the operation log. Insert should be used to
apply patches, which are made up of existing oper-
ations, and distributed between peers.

5.3.1 Append

The append function is used locally by a peer to
create and add new operations to the operation
log. When appending an operation, links are create
from the new operation to all the operations in the
peer’s current headset. The Lamport clock value
for the new operation is obtained by stepping the
maximum Lamport clock value in the current head-
set. After an append is performed, the new headset
should contain only the newly appended operation.

Peers provide new operations to their peers with
a patch, which can be applied using the insert func-
tion.

8

5.3.2 Patches and Insertions

Patches are the primary mechanism for distribut-
ing operations between peers. When patches are
received by peers, the insert function is used to ap-
ply each operation in the patch to the peer’s cur-
rent operation log and may provide new operations.
Patches are discussed further in Section 5.5.2.

The purpose of the insert function is distinct
from the append function. The insert function also
adds operations to the operation log, but the op-
erations themselves have already been created, and
have preexisting outgoing edges and Lamport clock
values. Appending is for something that happens,
and inserting is for something that happened.

Peers should validate new operations received in
a patch. While it may be difficult to determine
a peer’s headset at the time an operation was ap-
pended, it is possible to validate the Lamport clock
was stepped appropriately for the set of operations
to which the appended operation is linked.

Where possible, operation validation is per-
formed within Sylo Protocol, but it may be appro-
priate for applications to perform more extensive
validation.

5.4 Operations
An operation object consists of:

• Links to parent operations.

• A properly stepped Lamport clock.

• Application defined data.

• A digital signature, derived from the links,
clock, and data.

Signing operations with a user’s public key can
uniquely identify an operation within a DAG, pro-
vided a user does not concurrently appending the
same data. This signature method is not vulnerable
to replay attacks, as inserting the same operation
has no effect on the DAG.

The above properties are then hashed together
to create an Operation ID. Deriving an identifier
from the operation contents is known as content
addressing and plays an important part in securely
retrieving operations from untrusted sources. The
content address itself is a simple validation of data
integrity.

The first operation in an operation log is the root
operation. It is the only operation in the operation
log that does not contain links to any prior opera-
tions. Following the creation of the root operation,
when a new operation is appended to an operation
log, it must include links to all operations in the
current headset.

5.5 Synchronisation
5.5.1 Synchronisation Points

The operation log must be shared between peers to
ensure the requirement of eventual consistency is
met. Before the exchange of operations can occur,
it is useful to designate specific points in the oper-
ation log as synchronisation points. Sylo Protocol
uses clock sets as synchronisation points. A clock
set is a set of operations in the operation log with
the same Lamport clock value.

Algorithm 1 Calculate the synchronisation points
for n
Require: n ≥ 0

1: procedure syncPoints(n)
2: s← {0}
3: if n ̸= 0 then
4: x← 1
5: while x ≤ n do
6: y ← ⌊n/x⌋
7: if y mod 2 = 1 then
8: s← s ∪ {x · y}
9: else

10: s← s ∪ {n− x− n mod x}
11: end if
12: x← 2x
13: end while
14: end if
15: return s
16: end procedure

Synchronisation points must be created for de-
terministic clock values. Using deterministic syn-
chronisation points allows peers to arrive at the
same synchronisation points independently, lead-
ing to efficient communicate regarding the shared
operation log state. When two peers’ clock sets
differ, they will be able to request a patch from
the other peer containing the operations needed.
To support scaling, the number of synchronisation

9

Figure 2: The binary representation of 12 is 1100. Synchronisation points are computed by descending
a binary tree. The resulting set of synchronisation points for 12 is {0, 8, 10, 11, 12}.

points should grow at O(log n), where n is the num-
ber of operations in the operation log. Algorithm 1
demonstrates how synchronisation points are calcu-
lated. A peer need only pass the clock of the most
recent operation into the algorithm and a set of
synchronisation points is returned. Figure 2 shows
the binary tree used for computing synchronisation
points for the value 12.

Conceptually, the algorithm descends a binary
tree using specific rules to arrive at synchronisa-
tion points. It computes a synchronisation point
for each bit in the binary representation of the in-
put. Zero is also added to all results as a “worst
case” synchronisation point.

For a given input, n, the algorithm is designed
against the following properties:

• the cardinality of the set of synchronisation
points is ⌈log n⌉+ 1

• 0 and n are both included in the set of syn-
chronisation points

• for each synchronisation point, p, it holds that
0 ≤ p ≤ n

• a peers who is n ops “behind” another peer
is guaranteed to share a sync point within 2n
clocks of their current clock value

The last property allows us to place an upper
bound on the number of clock sets a peer needs to

retrieve to be in sync. An example is provided in
Figure 3.

5.5.2 Patches

Operations are sent between peers using patches.
A patch is a sub-set of operations in an operation
log and can be applied by peers using the insert
function. Peers generate patches based on the syn-
chronisation points of their operation log.

Consider an operation log where the most recent
operation has Lamport clock value 63. Using Algo-
rithm 1, synchronisation points can be calculated:

syncPoints(63) = {0, 32, 48, 56, 60, 62, 63}

The synchronisation points are then used to split
the entire operation log into patches.

Patch Hash
0-32 2824949852579646517
32-48 6994901160385823322
48-56 1659644955901676156
56-60 3952200542213080601
60-62 8193115102924706494
62-63 4638107771511484556

Patch hashes are created from the operations
making up the clock set of the synchronisations
point. Hashes are created for each patch to al-
low other peers to quickly validate operation log
history.

10

Figure 3: Peer A is at Lamport clock 1000 and Peer B is 50 operations ahead of them, at Lamport clock
1050. The syncPoints algorithm guarantees that they will share a synchronisation point between 900
and 1000. In this case, the common synchronisation point happens to be at 992.

Consider another peer, at Lamport clock 66.

Patch Hash
0-32 2824949852579646517
32-48 6994901160385823322
48-56 1659644955901676156
56-60 3952200542213080601
60-64 7261960480495164932
64-65 5269001705850208932
65-66 3579327145562378258

Using the patch hashes, it can be verified that
the operation log for both peers is identical between
clock sets 0 and their shared synchronisation point
at clock set 60. Using this information, the peer
could acquire only the patches for clock sets 60-
64, 64-65, and 65-66 and be assured of having all
missing operations known to the other peer.

5.6 Operation Log Schemes
The Sylo Protocol defines operation logs with a set
of predefined operations. Appending certain oper-
ations may only be valid when pointing to a sub-
DAG containing a prerequisite operations.

The set of operations and validation criteria that
define an operation log is referred to as the scheme.
The Sylo Protocol currently defines three operation

log schemes: a public profile scheme, a private pro-
file scheme, and a group scheme.

5.6.1 Public Profile Scheme

Operations supported:

• add device
• remove device
• update metadata
• remove metadata

The public profile scheme defines an operation
log for peer data that should be made available to
contacts. It is specifically designed to store device
information for the peer, but can also store generic
metadata.

The scheme defines operations for adding and re-
moving devices, via AddDevice and RemoveDevice.
Metadata is updated using UpdateMeta or removed
using RemoveMeta.

5.6.2 Private Profile Scheme

Operations supported:

• add device
• remove device
• update metadata

11

• remove metadata
• add contact
• delete contact
• edit contact
• add group
• remove group
• add invitation
• remove invitation

The private profile scheme is intended for use
across a peer’s devices. It includes the same oper-
ations used in the public profile scheme described
in Section 5.6.1, but extends the operation set with
operations for managing contacts, groups, and in-
vitations.

Contacts AddContact, DeleteContact, and
EditContact are defined by the scheme. They are
used for storing a contacts arbitrary metadata as-
sociated with each contact.

Groups The current set of groups for a peer is
managed using AddGroup and RemoveGroup. Note
that, unlike the contact operations, no metadata is
stored for groups.

Invitations Invitations are associated with
group membership. The group operation log
must manage peer invitations. However, peers
cannot see invitations in group before joining the
group. This is resolved by storing invitations to
new groups in the private profile operation log.
Invitations are added using AddInvitation and
removed using RemoveInvitation.

5.6.3 Group Scheme

Operations supported:

• post
• invite user
• remove user
• accept invitation
• revoke invitation
• define role
• grant role
• revoke role

The group scheme is used to create operation logs
that manage group state along with group data op-
erations. The group state tracks membership in the

group and also provides operations for creating and
assigning roles to group members.

Post Data is added to the operation log using
the Post operation. The post operation is highly
abstract and supports a wide range of applications.
It contains only the following information:

• tag – An application defined tag.

• meta – A set of key value pairs.

• encryption – The encryption scheme that is ap-
plied to the message content field.

• content – The message content, which can also
be empty.

Membership The group scheme pro-
vides four operations to track group mem-
bership: InviteUser, RevokeInvitation,
AcceptInvitation, and RemoveUser.

With these operations, it is possible to project
the group membership state for any position in the
operation log. The group state is used to validate
append operations and to encrypt messages sent
between members of the group.

For instance, it may only be valid for peer A to
append a message operation if the sub-DAG con-
tains an accepted-invite operation for peer A.

Roles Group members can be assigned roles
within a group, allowing them to append operations
to the group operation log. Roles are defined using
the DefineRole operation and roles for a member
are modified using the GrantRole and RevokeRole
operations.

5.6.4 Conflict Resolution

Concurrent operations can produce conflicts in an
operation log. For instance, an invitation in the
group scheme can be concurrently accepted and re-
voked. Conflict resolution strategies are used to de-
termine the operation log state in these cases. Re-
voking an invitation, for instance, is a “best-effort”
operation. If the invitation was already accepted
concurrently, the revoke operation will have no ef-
fect on the group state.

Conflict resolution will be further explored in fu-
ture work and is discussed in Section 6.2.

12

6 Future Work
The Sylo Protocol is in ongoing development and
several areas are still actively be explored. This
section highlights some of the interesting, challeng-
ing, or promising areas of research. It makes an
effort to be thorough, but should not be seen as
exhaustive.

6.1 Metadata Security Analysis
The exposure of metadata while communicating
over distributed or P2P networks is valid and wor-
thy of consideration. Identifying information is fre-
quently directly accessible, such as; sender/receiver
IP addresses, geolocation, time, and message fre-
quency/size. This data can be further mined to in-
directly predict other data, such as; home address,
work address, movement patterns, shopping habits,
and hobbies. Other methods for extracting useful
data from metadata is emerging all the time.

There are many avenues of exploration available
to protect the Sylo Protocol from metadata leaks.
Research in this area will likely be ongoing, with
problems corrected as they are encountered.

6.2 Improved Operation Log Con-
flict Resolution

The operation log is a partial ordering of opera-
tions. But applications frequently need a total or-
dering of operations. Topological sorting is the pro-
cess of transforming a partially ordered set into a
totally ordered set.

To achieve total ordering, we need a method for
selecting an ordering for two operations that hap-
pen concurrently. This problem is considered a
conflict and the process for choosing an ordering
for the conflicted operations is known as conflict
resolution.

A naive approach to conflict resolution, such as
choosing one operation at random, can always be
performed. Naive approaches can suffer an number
of problems, so effort should be taken to resolve
conflicts as logically as possible.

The current operation logs in the Sylo Protocol
implement a simple, deterministic form of conflict
resolution. This approach ensures that all peers
will resolve conflicts in the same way, thus ensuring
consistency of total ordering of an operation log

across all peers. Additionally, work is being done to
employ more efficient and logical conflict resolution
strategies. This work should improve the overall
user experience by aligning with user expectations
for conflict resolution.

6.3 Development of Additional Op-
eration Log Schemes

The Sylo Protocol defines three operation log
schemes, as discussed in Section 5.6. The exist-
ing operation logs (and specifically the group op-
eration log) are designed to be flexible for many
use cases. However, as development of dApps for
the Sylo Protocol continues, a need for additional
operation log schemes could emerge. It could even
be possible for external developers to define their
own custom schemes. For example, an operation
log scheme could be designed to collaboratively edit
documents using the Sylo Protocol.

Custom operation log schemes would makes it
possible for custom validation to be performed
within the Sylo Protocol itself. More importantly,
validation by the protocol level can prevent invalid
operations from being appended to the operation
entirely, thus conserving storage space.

It would seem likely that many dApps would ben-
efit from a custom operation log scheme and may
further drive external developer interest in the Sylo
Protocol.

7 Summary
The Sylo Protocol brings together decentralisa-
tion, peer-to-peer communication, security, and
distributed operation logs, to provide a group
secure messaging protocol for the Sylo Network
and external decentralised application develop-
ment. Through the Sylo app, a large number of
users already use the Sylo Protocol for their group
messaging. Future releases of the protocol will
bring new features and experiences to the decen-
tralised community and compete with popular cen-
tralised applications in terms of both scale and user
experience, all while maintaining privacy and data
autonomy.

The decentralised Internet of the future demands
solutions to some very challenging problems. The

13

Sylo Protocol addresses some of larger ones by giv-
ing developers a protocol to build upon and, hope-
fully, making this exciting space more accessible to
everyone.

8 Acknowledgements
The Sylo Protocol is being developed for everyone
and we would like to thank the incredible commu-
nity of humans who share our vision of a decen-
tralised future. If you work in this space, chances
are your work has inspired us in some way, and for
that we thank you.

14

References
[1] Brendan Abolivier. Enter the Matrix. May 13, 2018. url: https://brendan.abolivier.bzh/

enter-the-matrix/.
[2] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”. In: (July 2014).
[3] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-record communication, or, why not to use

PGP”. In: Jan. 2004, pp. 77–84. doi: 10.1145/1029179.1029200.
[4] J. Callas et al. OpenPGP Message Format. Nov. 2007. url: https://tools.ietf.org/html/

rfc4880.
[5] Ethereum. Whisper PoC 2 Protocol Spec. Aug. 22, 2018. url: https://github.com/ethereum/

wiki/wiki/Whisper-PoC-2-Protocol-Spec.
[6] Richard van der Hoff. Megolm Group Ratchet. Nov. 8, 2019. url: https://gitlab.matrix.org/

matrix-org/olm/blob/master/docs/megolm.md.
[7] S. Josefsson and I.Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). url: https:

//tools.ietf.org/html/rfc8032.
[8] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In: Commun.

ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782. doi: 10.1145/359545.359563. url: https:
//doi.org/10.1145/359545.359563.

[9] Maxie Marlinspike. The Double Ratchet Algorithm. Ed. by Trevor Perrin. Nov. 20, 2016. url:
https://signal.org/docs/specifications/doubleratchet/.

[10] Maxie Marlinspike. The X3DH Key Agreement Protocol. Ed. by Trevor Perrin. Nov. 4, 2016. url:
https://signal.org/docs/specifications/x3dh/.

[11] Messenger Secret Conversations. Facebook, Inc. May 18, 2017. url: https://fbnewsroomus.
files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.
pdf.

[12] Mobile Protocol: Detailed Description. Telegram. url: https://core.telegram.org/mtproto/
description.

[13] Aravindh Raman et al. “Challenges in the Decentralised Web: The Mastodon Case”. In: Proceed-
ings of the Internet Measurement Conference. IMC ‘19. Amsterdam, Netherlands: Association for
Computing Machinery, 2019, pp. 217–229. isbn: 9781450369480. doi: 10.1145/3355369.3355572.
url: https://doi.org/10.1145/3355369.3355572.

[14] P. Saint-Andre, ed. Extensible Messaging and Presence Protocol (XMPP): Core. Oct. 2004. url:
https://tools.ietf.org/html/rfc3920.

[15] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and
Presence. Mar. 2011. url: https://tools.ietf.org/html/rfc6121.

[16] Peter Saint-Andre. Multi-User Chat. May 15, 2019. url: https://xmpp.org/extensions/xep-
0045.html.

[17] Marc Shapiro et al. “Conflict-free Replicated Data Types”. In: SSS 2011 - 13th International Sympo-
sium Stabilization, Safety, and Security of Distributed Systems. Ed. by Xavier Défago, Franck Petit,
and Vincent Villain. Vol. 6976. Lecture Notes in Computer Science. Grenoble, France: Springer,
Oct. 2011, pp. 386–400. doi: 10.1007/978-3-642-24550-3_29. url: https://hal.inria.fr/
hal-00932836.

[18] Skype Private Conversation. Microsoft. June 20, 2018. url: https://az705183.vo.msecnd.
net / onlinesupportmedia / onlinesupport / media / skype / documents / skype - private -
conversation-white-paper.pdf.

15

https://brendan.abolivier.bzh/enter-the-matrix/
https://brendan.abolivier.bzh/enter-the-matrix/
https://doi.org/10.1145/1029179.1029200
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4880
https://github.com/ethereum/wiki/wiki/Whisper-PoC-2-Protocol-Spec
https://github.com/ethereum/wiki/wiki/Whisper-PoC-2-Protocol-Spec
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/megolm.md
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8032
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://core.telegram.org/mtproto/description
https://core.telegram.org/mtproto/description
https://doi.org/10.1145/3355369.3355572
https://doi.org/10.1145/3355369.3355572
https://tools.ietf.org/html/rfc3920
https://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://doi.org/10.1007/978-3-642-24550-3_29
https://hal.inria.fr/hal-00932836
https://hal.inria.fr/hal-00932836
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf

[19] Wickr Staff. Secure Messaging Protocols Part 1: A Brief History. June 14, 2019. url: https:
//wickr.com/secure-messaging-protocols-part-1-a-brief-history/.

[20] Andreas Straub. OMEMO Encryption. July 31, 2018. url: https://xmpp.org/extensions/xep-
0384.html.

[21] Sylo. Sylo Network: An incentivised peer-to-peer network. url: https://developers.sylo.io.
[22] Oskar Thoren. Fixing Whisper with Waku. Dec. 3, 2019. url: https://vac.dev/fixing-whisper-

with-waku.
[23] WhatsApp Encryption Overview. WhatsApp. Dec. 19, 2017. url: https://www.whatsapp.com/

security/WhatsApp-Security-Whitepaper.pdf.

16

https://wickr.com/secure-messaging-protocols-part-1-a-brief-history/
https://wickr.com/secure-messaging-protocols-part-1-a-brief-history/
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0384.html
https://developers.sylo.io
https://vac.dev/fixing-whisper-with-waku
https://vac.dev/fixing-whisper-with-waku
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Introduction
	Decentralised
	Peer-to-Peer
	Scale and User Experience
	Overview

	Background
	Encryption
	Confidentiality
	Forward Secrecy
	Repudiability

	Peer-to-Peer Communication
	Federation

	Goals
	Decentralised
	Secure and Confidential
	Highly Performant
	Feature Rich
	Fault Tolerant
	Resilient

	Sylo Users
	Identity
	Details

	Profile
	Public Profiles
	Private Profile

	Device
	Device Initialisation
	Device Security

	Operation Logs
	Concepts
	Directed Acyclic Graph
	Lamport Clock
	Headset

	Operation Log Model
	Transformations
	Append
	Patches and Insertions

	Operations
	Synchronisation
	Synchronisation Points
	Patches

	Operation Log Schemes
	Public Profile Scheme
	Private Profile Scheme
	Group Scheme
	Conflict Resolution

	Future Work
	Metadata Security Analysis
	Improved Operation Log Conflict Resolution
	Development of Additional Operation Log Schemes

	Summary
	Acknowledgements

