

Whitepaper

Version 3, BlockStamp, 30th January 2019

Summary 3

What is BlockStamp 3
Document and signature storage 3
BlockStamp Games 4
DNS 5
Future applications 5
BlockStamp investment 5
BlockStamp Roadmap 8

Technology 9
BST Blockchain characteristics 9
Document and signature storage 10

Usage 10
Gaming​ center 12

Random Number Generation 12
Jackpot concept 13
Roulette betting model 13
Lottery betting model 15
Mechanisms for your own game 16
Bet verification 17
Block hash/number 17
Transaction hash 22
Wallet address 23
Mining and poles 26
Installation 26
Mining constraints 26
The approach to casino’s profitability 27

DNS 27
Description 27
Usage 28
Atomic transaction 30
Workflow example 36
Desktop application & Wallet 38
Value transfer 38
Gaming 39
Data 39

Appendix 1 - bet types, syntax, and numbers 40

 ​2

Summary
This documents describes the current status of the BlockStamp project, its
functionalities and potential. The document will be constantly updated as the
BlockStamp will be evolving. The document is maintained by the BlockStamp and its
latest version will always be available on the project’s ​website​.

1. What is BlockStamp
BlockStamp (BST) is a new digital currency intended to
store user data in blockchain. It is based on Bitcoins
peer-to-peer technology to operate with no central
authority. The goal was to create a new fast and
effective blockchain that could be used for trusted
timestamping of documents. Currently, BlockStamp
blockchain is used as the core of an online gaming
platform. Future uses will cover timestamping dedicated
for banking purposes, DNS and more.

BlockStamp Games is an example of an implementation
of randomized transactions provided by the BlockStamp
blockchain. The blockchain offers the possibility to
obtain fair, untempered randomness that can be used in
many applications such as e-gaming.

1.1. Document and signature storage

Sensitivity of banking transactions requires a very solid,
hacking-proof, and secure system to store the data.
BlockStamp blockchain is designed for this very purpose
and can offer tamper-proof timestamping of banking
transactions.

 ​3

https://whitepaper.blockstamp.info/

This can include but is not limited to:
● Money transfers
● Stock exchange prices
● Bonds
● Debentures
● Bank loans
● Notes payable
● Other debts units

This functionality is under development currently and will be made available
shortly.

1.2. BlockStamp Games

The whole concept was to facilitate e-gaming in a completely new form,
where there is no casino side, no house edge, and all the transactions can be
verified by the players.

There were many attempts in order to create such a platform, however most
of them failed during implementation, while some are still suffering from long
implementation processes. The majority of those were ICOs, which after the
initial fundraising, failed to produce the actual product. We took a completely
different approach and decided to build our own currency as part of the
project instead of raising funds for building online e-gaming sites.

Our goal was to build the whole new platform which would be able to host
players and to provide randomness with 0% edges and minimal fees at the
same time providing transparency of all the transactions. Hence, we decided
to develop a new currency which blockchain would be used for the fairness
purposes.

BlockStamp blockchain levels all issues with provably fairness, transparency,
or any kind of tampering with the game results.

 ​4

Current cryptocurrency casino market is still in its infancy, while its older
brother does not provide any good example. The most common issues are:

● Lack of transparency of transactions
● High probability of tampering with game results (centralised

infrastructure with no access from the outside of the casino)
● High fees related with betting and winning
● Extended withdrawal times and high withdrawal fees.
● Progressive jackpot
● No possibility to host one’s own game
● Overall casinos’ profit orientation

BlockStamp Games gets rid of all that and aims at educating people about
gambling. The goal is to fight with gambling misconceptions by providing a
platform that demonstrates that chance can not be controlled. The player can
test different strategies and learn that the chance to win significant amounts
is small even in a casino that does not take any fees. The player can run the
test with demo coins that can be restored indefinitely and with crypto coins
that can represent some value. In the second case the player can assess how
an increase in the value of risked tokens affects the emotions during the
game. When playing with demo coins the player is warned about potential
risk of a gambling disorder when the balance drops below 90% of the starting
balance.

1.3. DNS

The concept is based on the fact that more and more domains are being
watched and blocked, against the will of the users. Peer-to-peer DNS
prevents this kind of situations. This functionality is under development and
will be made available shortly.

1.4. Future applications

Given that BlockStamp can be perceived as a solid timestamping device, its
applications can only be limited by its users’ imagination and requirements,
but not by its functionality. A set of flexible procedures will be issued which
will make purpose oriented timestamping possible. This document will be
updated accordingly.

 ​5

1.5. BlockStamp investment

BlockStamp currency is deemed to be a profitable investment option due to
the following aspects:

● The gambling market was estimated at 44.16 billion in 2016 and is
expected to reach USD 81.71 billion by 2022 according to Business
Wire
(​https://www.businesswire.com/news/home/20170928005702/en/Glob
al-Online-Gambling-Market-2017-2022---Research​). Those numbers
take under account only the official gambling market, while the illegal
is deemed to be somewhere between 80 and 380 billion USD. The
popularity of online gambling is growing and so will the BST price.

● According to the ​CoinMarketCap​, currencies’ prices are in general
higher and much more stable compared with tokens. BST is bitcoin
fork and is expected to be stable and well priced. The currency is
already being mined and used, hence it will not join the ​Dead coin​ list.

● The wide applicability of the BlockStamp functionality will hook it on
the market and provide a solid base for cooperation with well
recognised brands, e.g. on the financial market.

Although all investments have some degree of risk incorporated into them, the risk
related with investing in BST has been diminished and is as low as possible on the
crypto (and some fiat) investment market. Further information can be provided on a
request basis, if required.

 ​6

https://www.businesswire.com/news/home/20170928005702/en/Global-Online-Gambling-Market-2017-2022---Research
https://www.businesswire.com/news/home/20170928005702/en/Global-Online-Gambling-Market-2017-2022---Research
https://coinmarketcap.com/
https://deadcoins.com/

1.6. Blockstamp Roadmap

Blockstamp team has a long term plan for project development. We focus on
creating useful tools to protect all types of users data in secure blockchain
ecosystem. Blockstamp is a working platform which is available to use right now.
Nevertheless, we have the exact plan and resources to implement new practical
solutions for our community.

Cryptocurrency transfer
April 2018
Near-tamper proof blockchain technology, hosting BlockStamp
currency is now combined with 1 minute block time to ensure
everything happens quickly and efficiently.

BlockStamp online wallet - fully secure way to hold your BST
February 2019
BlockStamp online wallet with major security improvements such as
PBKDF2 to protect your password from brute force attack is a
convenient and user-friendly way to protect and manage your funds.

lockchain based e-gaming and education platform
February 2019
Players can test different gambling strategies in a 0 house fee
environment. Players can learn that chance can not be controlled.
Check it out here: ​https://blockstamp.games/

 ​7

https://blockstamp.games/

Privacy network participants earn in BST
February 2019
Hprox is a BlockStamp partner project allowing users to surf the
internet 100% anonymously. Members can rent out their IP addresses
to privacy seekers in exchange for BST.
Check it out here: ​https://hprox.com/

Coinpaprika crypto market cap site lists the BST
February 2019
You can track all the most important data about the BST crypto coin
such as its current price, exchange volume, and more.
Check it out here: ​https://coinpaprika.com/coin/bst-blockstamp/

BST mining pool
March 2019
You can join the BlockStamp mining pool via ​http://bsod.pw/​.
The GPU and CPU miners' software is available at our github.

Listing on CoinMarketCap
April 2019
BST lists on the world’s favorite cryptocurrency market cap ranking
site.
Check it out here: ​https://coinmarketcap.com/currencies/blockstamp/

BlockStamp OpenBazaar Listing Explorer
August 2019
The BlockStamp listing explorer offers a full view of OpenBazaar’s
decentralized, commission-free marketplace. Sellers can boost their
products’ search rankings by burning BST.

 ​8

https://hprox.com/
https://coinpaprika.com/coin/bst-blockstamp/
http://bsod.pw/
https://coinmarketcap.com/currencies/blockstamp/

Rooms at BlockStamp Games
September 2019
BlockStamp Gamers can create and administer their own casino rooms
for friends.

Blockchain data sealing via online wallet
October 2019
Users can easily secure and authenticate their valuable data directly
through the BlockStamp online wallet.

BlockStamp Chat
November 2019
A decentralized mobile and desktop messaging application focused on
security and privacy.

2. Technology
2.1. BST Blockchain characteristics

BST is hard fork from BTC blockchain and as such it share almost all
characteristics of the original blockchain. The main difference of the BST chain
being the hashing, as hashes of the blocks start with the most significant bit
set to one (0x80000000....) instead of the original zero (0x00000000...). In
terms of transactions recording, the BST blockchain is almost identical with
BTC blockchain. As such, it will be used for timestamping of transaction
documents. However, to make the timestamping faster and more efficient, the
transaction size was increased to 1MB and block time was reduced to 1
minute.

BST is minable currency with the number of BST increasing by an average of
500 000 BST each year. The rate of block creation is adjusted by Difficulty
Adjustment Algorithm, which is similar to Bitcoin Cash - BCH. The number of
BST generated per block equals 1 BST and is constant all over the time.

 ​9

Chaining the blocks, like with BTC blockchain, makes it impossible to modify
each block without modifying all the subsequent blocks. This is due to the
hash of previous block being included in the following block. Given that a
block’s hash is generated based on its content, the block’s content
modifications would alter the hash and all subsequent blocks either. This
characteristics of a blockchain is used for ensuring that no transactions, (as
well as wins and loses in the gaming) would be tampered with. This is by far
the most foolproof approach given the current technology.

2.2. Document and signature storage
2.2.1. Usage

To store and retrieve data from the blockchain following RPC commands
should be used:

I. bst-cli storemessage
which accepts data string as an argument and returns block hash, e.g.
bst-cli storemessage "user data string"

RETURN:
c04878b7bf26def16ee689863943da91f9e7dcce77250e1ca8b63

90549356006

II. bst-cli retrievemessage ​which retrieves message from a
particular block (accepts block hash as an argument and returns the
data string contained by it, e.g.
bst-cli retrievemessage

c04878b7bf26def16ee689863943da91f9e7dcce77250e1ca8b63

90549356006

RETURN: ​"user data string"

III. bst-cli storesignature​ which can store user’s digital signature
into a transaction, retrieved from a file; it accepts path to the file as an
argument and returns block hash, i.e.
bst-cli storesignature /path/to/file/myfile

RETURN:
0eec311afa6e8253c984d9bd57dadedd72848065160a093dc66a7

 ​10

76388cfda13

IV. bst-cli storedata​ which takes any data from a file and stores it in
a block; it accepts path to the file as an argument and returns block
hash, i.e.
bst-cli storedata /path/to/file/myfile

RETURN:
ad1e1c0736f366fdf6b2e9b63048c02a0aef83fdf4e705e78f89c

3e654fa3323

V. bst-cli retrievedata​ which retrieves data from a block and
returns it as a string; it accepts block hash as an argument and returns
the data string contained by it, e.g.:
bst-cli retrievedata

ad1e1c0736f366fdf6b2e9b63048c02a0aef83fdf4e705e78f89c

3e654fa3323

RETURN: ​"content of a myfile as a string"

VI. bst-cli retrievedata​ Same as above, only with two arguments
(block hash and path to a file to which the command is suppose to
store the data), it returns no output, e.g.:
bst-cli retrievedata

ad1e1c0736f366fdf6b2e9b63048c02a0aef83fdf4e705e78f89c

3e654fa3323 /path/to/file/outfile

RETURN: (none)

To check if data stored in blockchain match user data, the following RPC
commands should be used:

I. bst-cli checkdata​ which retrieves data from a block, compares

with the file provided as second argument and returns PASS or FAIL
depending on the comparison result, e.g.
bst-cli checkdata

e.g.:ad1e1c0736f366fdf6b2e9b63048c02a0aef83fdf4e705e7

8f89c3e654fa3323 /path/to/file/myfile

RETURN: ​PASS
II. bst-cli checkmessage​ which retrieves data from a block,

compares with the string provided as second argument and returns
PASS or FAIL depending on the comparison result, e.g.

 ​11

bst-cli checkmessage

c04878b7bf26def16ee689863943da91f9e7dcce77250e1ca8b63

90549356006 "user data string"

RETURN: ​PASS

III. bst-cli checksignature​ which retrieves signature from a block,
compares with the file provided as second argument and returns PASS
or FAIL depending on the comparison result, e.g.
bst-cli checksignature

0eec311afa6e8253c984d9bd57dadedd72848065160a093dc66a7

76388cfda13 /path/to/file/myfile

RETURN: ​PASS

IV. bst-cli listtransactions​ which retrieves transactions list from
a block and returns it. In addition to the list, it also returns "datasize"
field informing about the size of the data stored in the blockchain, e.g.:
bst-cli listtransactions

0eec311afa6e8253c984d9bd57dadedd72848065160a093dc66a7

76388cfda13

2.3. Gaming center

The idea behind the gaming center was to create a platform anyone could
use. The design allows us to get rid of house (and house edge). The platform
is an open source project, and is available to everyone on ​GitHub​ for view and
for use. Everyone who wishes so can download the code, and build one’s own
node, which can then be used for mining and gaming.

2.3.1. Random Number Generation
There are different approaches to the topic of random number generation,
and the topic is also one of the most sensitive aspects of gaming. Everyone
knows that randomness is the key to fair gaming. Old Fashioned central
server online casinos were very often accused (not without a reason of
course) of tampering with the random number generators or of having no
randomness implemented at all. It is not very surprising, given the profit
oriented approach of most, if not all, of the casinos. Having a solid random
system is key to building a trustworthy online casino.

As said, there are different approaches to the RNG, with Oracles being the
most popular for ETH smart contract. Most of the random number generation
approaches are deemed slow and ineffective. There is no truly random system

 ​12

https://github.com/BlockStamp/bst

in computing science, nevertheless some degree of randomness can be
obtained.

BlochStamp casino’s approach is to use the hash of the block containing
bet transaction. This approach guarantees true randomness as no user can
predict the hash of the block his/her transaction will be put into.

When accepted by pool, a bet is put into a block. The last 4 bytes word of
block hash is divided modulo by the modulo argument (the actual bet) and the
result is increased by 1. The result is then taken and compared with the bet,
and the bet is a winning one if the numbers are equal.

For example, let’s imagine that a user bets on roulette result to be 12. The bet
is put into a transaction and the transaction is part of a freshly mined block.
The hash of the block is then truncated to obtain only the last 4 bytes,
decimalised, and divided modulo 36. The result of the equation is increased by
1. If the increased value is equal 12 then the bet is a winning one.

2.3.2. Jackpot concept
By design, the jackpot MAX_PAYOFF is limited to 1024*1024 BST, i.e. 1 048
576 BST. The jackpot is set to this amount from the beginning. No losing bets
are required to fill it in. It is also designed so that a win of the maximum
amount does not reduce future rewards. The reward coins will simply be
mined as part of the block containing the winning transaction.

The design was possible due to probability of a win of such amount and some
constraints on the actual betting. There are two rules around how
transactions are chosen for blocks. The sum of input amounts (all bets)
included in a given block will not be greater than 0.9 of a current block
subsidy (i.e. 50BST at the moment), and the sum of payoffs/rewards for for a
block will not be greater than the sum of the inputs and the subsidy. This
prevents huge bets with lowest modulo (i.e. 2) that can cause the system to
collapse.

2.3.3. Roulette betting model
The BlockStamp roulette was designed to have 0%
house edge, as there is no House betting with the
players. Understandably, there is no 0 or 00 on the
roulette. The numbers available for betting are 1-36.

 ​13

This adds up to the fairness of the gaming model, as the win on a single
number is true 35:1.

The transaction to make a bet and play is ​makebet​.
In order to make a bet, a user needs to choose a number or numbers and the
sum of a bet. There are 13 types of bets:

● Straight (single number) with 35:1 ratio
● Split (two numbers) with 17:1 ratio
● Street (three numbers) with 11:1 ratio
● Corner (four numbers) with 9:1 ratio
● Line (six numbers) with 6:1 ratio
● Column (twelve numbers) with 3:1 ratio
● Dozen (twelve numbers) with 3:1 ratio
● Low (eighteen numbers) with 1:1 ratio
● High (eighteen numbers) with 1:1 ratio
● Even (eighteen numbers) with 1:1 ratio
● Odd (eighteen numbers) with 1:1 ratio
● Red (eighteen numbers) with 1:1 ratio
● Black (eighteen numbers) with 1:1 ratio

Details of the actual bet types are available in ​Appendix 1​ of this document.

There can be more bets in one transaction than one. For example:
makebet straight_3@0.1+street_5@0.05+high@0.7

Which is a compilation of three bets:
● No 3 with 0.1BST bet amount
● No 7,8,9 with 0.05BST bet amount
● High numbers with 0.7BST bet amount

The details of the bet will be stored in op_return field in the transaction. In this
case, it would look as follows:
Op_return:

00000024_straight_3@100000+street_5@500000+high@7000000

To make a bet a user should have total transaction input amount equal to
sum of bet amounts plus fee. In this case: 0.1+0.05+0.7+0.000x BST. The fee
is computed automatically inside makebet RPC and is the mirror of current
BTC fee algorithm. This fee is a mining fee only, there are no other fees related
with betting or winning.
Calling makebet RPC returns transaction ids.

Making bets has following limitation, by design:

● Maximum modulo argument (reward ratio) is 1024*1024*1024
● Maximum payoff is 1024*1024 BST
● Minimum bet is 0.00000001BST

 ​14

Winnings are redeemed automatically. A block following the block containing
the winning transaction, will contain a payout transaction. The winning will be
transferred to the wallet used in the ​makebet​ transaction.

Before block 224940, the implementation included a ​getbet​ transaction that
was designed to verify if a transaction was a winning or a lose and redeem
the reward to a wallet provided as the transaction’s parameter. Calling
makebet RPC returns transaction id. This transaction ID was used then as an
input to ​getbet​ RPC, which accepted two arguments - transaction ID and an
address where the reward should be sent. For example:
getbet

123d6c76257605431b644b43472ee3666c4f27cc665ec8fc48c2551a88

f9906e 36TARZ3BhxUYaJcZ2EF5FCT32RnQPHSxYB

Getbet​ returned a transaction ID for a successfully redeemed wins or errors
in case of loses. To properly redeem the win amount,
Pay-To-Public-Key-Hash transaction keys must have matched.

Please note that the transaction is obsolete and it no longer exists. It was
replaced by the automated redeem system introduced by the hardfork in
block 224940​. This applies also to the lottery and the mechanism for user’s
own game described below.

2.3.4. Lottery betting model
Lottery also utilises ​makebet​ transaction with the
same syntax. What makes lottery different is that
the only bet type available is straight bet. Each
makebet​ can define one number or more as
separate bets from 1 up to 2^30 with modulo set to
maximum 2^30. Makebet RPC can accept more
than one straight bet, up to 10 bets. The modulo

operator defined is tantamount to the number of options we draw from. For
example:
makebet 2@0.1+3@0.05 72

would put into a transaction a bet for No 2 and No 3 with different incentives
(0.1BST and 0.05BST accordingly). Having modulo set to 72 means that the 4
bytes of hash of the block in which the transaction will be put, shall be divided
modulo 72 (as if we drawn from 72 numbers from 1 to 72). If the result of the
hash modulo 72 operation plus one is equal to any of the numbers user betten
on, the transaction will be a winning one. All bets in one ​makebet ​RPC are
subject to the same rules and same modulo defined in the ​makebet​.

 ​15

In this case reward ratio is equal modulo argument and the op_return field
contains only reward ratio and consecutive straight bets, excluding bet name
prefix (e.g. "straight"). For example, in case of the above bet op_return bet
description would look as follows:
op_return: 00000048_2@10000000+3@100000000

If a bet is a losing one, all coins in the bet are sent to the op_return and ‘burnt’.
Otherwise, the rewards are sent automatically to the bet wallet in the
following block.

2.3.5. Mechanisms for your own game
The BlockStamp platform can be treated as a
hosting platform for user’s own game. ​Makebet
transaction is available for this option and works as
it does in the lottery game. User’s own game rules
determine the bets and modulo, where module is the
reward ratio. For example, if dice is to be
implemented, the bets should accept numbers from

1 to 6 and modulo should be set to 6. If two dices are to be rolled together,
numbers would be from 2 to 12 and modulo should be set to 11. To avoid 0,
the result of hash modulo operation is plused one and only after that it is
compared with the number user betted on. So the makebet could look as
follows:

makebet 2@0.1+11@0.05 11

This means that a user bets on double dice rolling 2 (1+1) with 0.1BST and 11
(5+6) with 0.05BST. Modulo is set to 11, and the block of the hash which
would contain the bet would be divided by 11 and then added 1.

As for the actual transaction syntax, it looks as follows. ​Makebet​ transaction
is signaled by 30’th bit in the transaction version field. Value 1 at this position
(0x40000000) sets transaction type to ​makebet​ transaction. Bets outputs
occupies outputs beginning from index 0. Next to bets output, there is an
op_return output containing the description of the bets included in the
transaction. The op_return string begins with hexadecimal number defining a
modulo argument (e.g. 0x24 for roulette, 0x48 for out lottery example, and
0xB for our double dice example), followed with user bets. The modulo
argument is separated by underscore, bets are separated by plus.
The last output field is reserved for change purpose, where change is
transaction input minus bets amount minus fee, i.e.:

 ​16

prev_txs_outs_amount-Bet1_amount-Bet2_amount-Bet3_amount-.

..-fee

In case then the transaction input is 50BST (which is the standard block
reward), and 3 bets for 0.1BST, 0.05BST, and 0.7BST, and fee=0.0004 BST
the change field would contain 49.1496 BST (50-0.1-0.05-0.7-0.0004 =
49.1496 BST).

If a bet is a losing one, all coins in the bet are sent to the op_return and ‘burnt’.
Otherwise, the rewards are transferred automatically, as in roulette and
lottery

2.3.6. Bet verification
What one needs to know before doing the calculations is that block hash in
which a transaction is put is our random number which is used for the actual
draw (or roulette spin). Details are available on our ​github wiki​ and in this very
document. It contains all the details on how it is ensured that there is no way
anyone can predict the random numbers before making a bet.

The procedure is pretty simple as all the necessary details can be found via
BST explorer​.

Data needed for the verification is either of the following:

1) Block hash/height
2) Transaction hash (your bet)
3) Wallet address

3.2.6.1. Block hash/number
Block hash or block height can be put into the explorer search which can be
found on the top left corner. A result of the search is a block with all the
details. For example:
https://explorer.blockstamp.info/block/8000000000023e663e322af14e8febec
fa5047bf28158ac3a13e4a06db69b212

 ​17

https://github.com/BlockStamp/bst/wiki/Gambling:-RNG-and-rewards
http://explorer.blockstamp.info/
https://explorer.blockstamp.info/block/8000000000023e663e322af14e8febecfa5047bf28158ac3a13e4a06db69b212
https://explorer.blockstamp.info/block/8000000000023e663e322af14e8febecfa5047bf28158ac3a13e4a06db69b212

What can be found there are all block details, like block size and time, fees,
amount transacted. Also the list of all transactions that were part of that
block is available. The required bet transaction should be there too. It will
contain all the details like wallet address, type of game (roulette, lottery), the
bet details like bet type for roulette (e.g. a single number, corner, line) and a
number plus pool/modulo for lottery. Pool/modulo is the number of options
used to draw from, e.g. for a draw of 1 number out of 6 - 6 will be the modulo.

 ​18

The transaction will also instantly show you if it was a win or a loss

To do one’s own calculations the steps are as follows:
- Take the last 8 characters of the block hash (which is our example is

db69b212​)

- Use an online tool to decimalise the numbers. We suggest

https://www.rapidtables.com/convert/number/hex-to-decimal.html​ and
it gives us ​3681137170​.

- The decimalised value needs to be divided by the modulo, which for
roulette is always 36 but for lottery (and this is the example used here)
it is the defined pool of numbers. In our example, it is ​1374

 ​19

https://www.rapidtables.com/convert/number/hex-to-decimal.html

For modulo operation, we recommend this calculator:
https://www.miniwebtool.com/modulo-calculator​ The result of the
operation is ​184.

- All results are increased by one in order to avoid zeros. So the actual
result of the lottery game is ​185​.

- Now you need to compare it with the number you betted on. In our
example, they are equal.

A roulette example would only differ at the point where the modulo operation
comes in. To picture that, the following winning transaction and the block
containing will be used:
https://explorer.blockstamp.info/block/80000000000effc8960ec3254ed66668
a9a193c3b7d2ee859538bfc311d73245
https://explorer.blockstamp.info/tx/5080f81f77a8bf01834696de71a8d05f468
56c6db48b324a6b7dce89e4bbd043

 ​20

https://www.miniwebtool.com/modulo-calculator
https://explorer.blockstamp.info/block/80000000000effc8960ec3254ed66668a9a193c3b7d2ee859538bfc311d73245
https://explorer.blockstamp.info/block/80000000000effc8960ec3254ed66668a9a193c3b7d2ee859538bfc311d73245
https://explorer.blockstamp.info/tx/5080f81f77a8bf01834696de71a8d05f46856c6db48b324a6b7dce89e4bbd043
https://explorer.blockstamp.info/tx/5080f81f77a8bf01834696de71a8d05f46856c6db48b324a6b7dce89e4bbd043

The calculations are as follows:

- The last 8 characters (​11d73245​)

decimalised would make ​299315781
- 299315781​ modulo ​36​ (the default roulette modulo) is ​9
- 9​ plus 1 is ​10​ so the actual result of the roulette round is ​10​.
- Now, comparing it with the bet which was CORNER (7, 8, 10, 11) we

can see that ​10 ​is one of the betted numbers. Hence, the transaction is
a win

Alternatively, having block hash, one can check the following block in order to
see all reward transaction details. For example, block 229353
(​https://explorer.blockstamp.info/block/8000000000001a2b1cd5ba03ef55c31
c50f2cb5e62c0353234bf421297cdd859​) contains:

 ​21

https://explorer.blockstamp.info/block/8000000000001a2b1cd5ba03ef55c31c50f2cb5e62c0353234bf421297cdd859
https://explorer.blockstamp.info/block/8000000000001a2b1cd5ba03ef55c31c50f2cb5e62c0353234bf421297cdd859

And the following block 229354
(​https://explorer.blockstamp.info/block/800000000000020398b7a3b0d94866
2d4f520b821951c53f0fd31a2d8fba6906​) contains the following transaction:

3.2.6.2. Transaction hash
If only transaction hash is available, the verification instructions are as
follows:

- Go to the ​explorer ​and search for the transaction hash. You will be
shown the transaction details.

- Find the block details is to click on the advanced properties of a
transaction and check which block was it part of. The link there will
open the block details for you.

 ​22

https://explorer.blockstamp.info/block/800000000000020398b7a3b0d948662d4f520b821951c53f0fd31a2d8fba6906
https://explorer.blockstamp.info/block/800000000000020398b7a3b0d948662d4f520b821951c53f0fd31a2d8fba6906
https://explorer.blockstamp.info/

- Having the block’s hash, you can start the calculations. Just follow the

above instruction and you will verify your bet.

3.2.6.3. Wallet address
If all info available is the wallet address, the verification is also possible. The
above lottery win example will be used to show that. In the lottery winning
transaction, the wallet involved in the bet was
https://explorer.blockstamp.info/address/37qqxd5e5gXdDVv47t3JDyjteB7PL8
H9Q4

 ​23

https://explorer.blockstamp.info/address/37qqxd5e5gXdDVv47t3JDyjteB7PL8H9Q4
https://explorer.blockstamp.info/address/37qqxd5e5gXdDVv47t3JDyjteB7PL8H9Q4

The link will show all transactions that went to and from that wallet.

To find the transaction details, one needs to open the bet transaction by
following the link under the winning transaction or by clicking on the link
below TXID:

 ​24

The transaction will show block height in its advanced properties (please refer
to the ​transaction hash​ example). Having the hash and bet details, one needs
to follow the calculations instruction to get the result.

Similarly for a lost bet:
https://explorer.blockstamp.info/address/37tePnymtSM33egBCpveSqcAsNXJ
GPydRe​, the TXID link needs to be followed to obtain transaction data:

 ​25

https://explorer.blockstamp.info/address/37tePnymtSM33egBCpveSqcAsNXJGPydRe
https://explorer.blockstamp.info/address/37tePnymtSM33egBCpveSqcAsNXJGPydRe

After that, the calculation instructions needs to be followed to verify the bet.

2.3.7. Mining and poles

2.3.7.1. Installation
BlockStamp project’s code is available on our ​GitHub project site​.To start
using BlockStamp one should build the project and run a node with option
-txindex to enable blockchain transaction queries. The node default
configuration lets you connect to our working nodes. When connected to the
existing node, the new node should start downloading blocks. After
downloading process is completed, one can start working with BlockStamp.

Default settings for BST are following:

● working directory: ~/.bst
● config file: bst.conf
● RPC port: 8445
● peer-to-peer network port: 8446
● executable names: bst*

2.3.7.2. Mining constraints
Coinbase transaction in each of the blocks contains 50 BST, that are
unspendable for the following 1000 blocks.

A mining policy exists preventing blocks from being mined, if the rules are not
followed. The rules are:

● The sum of input amounts for winning ​makebet​ transactions included
in a given block is not greater than 0.9 of a current block subsidy

 ​26

https://github.com/BlockStamp/bst

(currently 50BST) and the sum of payoffs for for this block is not
greater than the sum of inputs and the subsidy.

● The sum of payoffs for winning ​makebet​ transactions included in a
given block is not greater than maximum reward (1024*1024 BST, i.e.
1 048 576 BST).
Miners can select the transactions they prefer to put into a block,
based on the pools rules (e.g. fee, amount of a bet, potential reward).

2.3.8. The approach to casino’s profitability
The project is maintained and developed by BlockStamp which is a non-profit
organisation. Hence, the BlockStamp Games is not designed to be a profitable
project. There are no hidden costs, fees, or edges as BlockStamp is not a side
in the gaming.
The project is open source and can be used by anyone who wishes so. The
currency as well as the platform will be improved as much as possible by
BlockStamp and its cooperators.

2.4. DNS
2.4.1. Description

DNS service is build on the BlockStamp blockchain base. Details of
domain names are stored in blocks. Transactions are used to:

● Create name
● Modify name details (change owner info, i.e. the wallet, modify

expiration date which is 36000 blocks by default which is a
year time)

● Search for a name (in order to verify if it is already taken or to
check details of a specific name, like owner, expiry date,
availability for sale)

● Show name history (this can be used to show historical data,
like ownership, expiry, etc). It lists all entries related with the
name provided as parameter.

● List all names that match a pattern (regex is used to define the
pattern). No pattern means that 500 (or any other defined
number) names will be listed starting from the defined block.

● List all unconfirmed operations related with DNS. This pan also
be parameterized and a list of all operations related with a
specific name can be obtained.

 ​27

2.4.2. Usage
I. bst-cli name_show​ which looks up the current data for the given

name and returns name, data, wallet information, update date, and
expiry information if possible e.g.
bst-cli name_show mydomain.com

RETURN: ​{
 ​"name": "mydomain.com",
 "name_encoding": "ascii",

 "value": "new-test-value",

 "value_encoding": "ascii",

 "txid":

"d839cd97b2339fa3f204b5d38517480aa89d9b1cd5a6c6e4e6bf

09b611558967",

 "vout": 1,

 "address": "1FLF43YBB1JaKqLQFpoBkjsg8HTnWfFBwe",

 "height": 116181,

 "expires_in": 525596,

 "expired": false,

 "ismine": true

}

II. bst-cli name_history​ which looks up the current and all past
data for the given name and returns name, wallet information, update
date, and expiry information for all the entries found for that specific
name, e.g.
bst-cli name_history mydomain.com

III. bst-cli name_scan​ which all names found in the database. It also
accepts parameters (name to start from and number of blocks to
show, which by default is 500) e.g.
bst-cli name_scan mydomain.com

 {

"name": "mydomain.com",

"name_encoding": "ascii",

"value": "for sale at 1BST",

"value_encoding": "ascii",

"txid":

"d839cd97b2339fa3f204b5d38517480aa89d9b1cd5a6c6e4e6bf

09b611558967",

"vout": 1,

 ​28

"address":

"1FLF43YBB1JaKqLQFpoBkjsg8HTnWfFBwe",

"height": 116181,

"expires_in": 525595,

"expired": false,

"ismine": true

 }

IV. bst-cli name_filter​ which shows all names found in the
database that match the regular expression provided as parameter. It
also accepts the following optional parameters:

A. Maximal age (No of blocks to check back to)
B. Height of the block to check from
C. No of results to throw
D. Stats - whether statistics is to be thrown instead of domain

names
Usage example:
bst-cli name_filter [a-z]8[1-9]1

RETURN: ​ {
"name": "mydomain1.com",

"name_encoding": "ascii",

"value": "not for sale",

"value_encoding": "ascii",

"txid":

"d839cd97b2339fa3f204b5d38517480aa89d9b1cd5a6c6e4e6bf

09b611558967",

"vout": 1,

"address":

"1FLF43YBB1JaKqLQFpoBkjsg8HTnWfFBwe",

"height": 116182,

"expires_in": 525595,

"expired": false,

"ismine": true

 }

 {

"name": "mydomain2.com",

"name_encoding": "ascii",

"value": "not for sale",

"value_encoding": "ascii",

"txid":

"4b5d38517480aa89d9b1cd5a6c6e4e6bf09b611558967d839cd9

7b2339fa3f20",

"vout": 1,

 ​29

"address":

"1JaKqLQFpoFLF43YBB1Bkjsg8HTnWfFBwe",

"height": 108181,

"expires_in": 525595,

"expired": false,

"ismine": true

 }

V. bst-cli name_pending​ which shows all name related unconfirmed
operations in the pool. It can be limited to a specific name only, if
parametrised (name of the domain should be provided as parameter)
Usage example:
bst-cli name_pending

RETURN:
{

"name": "mydomain.com",

"name_encoding": "ascii",

"value": "not for sale",

"value_encoding": "ascii",

"txid":

"d7afa2230eec0a22fc9abfe0185fd507ce57a209d3eef6340641

c1e022a50cc0",

"vout": 0,

"address":

"1PRqgLKvSwhqcoQgGt3CAD34M4ndMNEt2Z",

"ismine": true,

"op": "name_firstupdate"

 }

VI. bst-cli name_checkdb ​which verifies the name db consistency.

2.4.3. Atomic transaction
The idea of atomic transaction is to enable trustless transactions
without the need of escrow. Atomic transaction is a transaction that
ensures that either both elements of it happen simultaneously or none
does.
In case of DNS, this means that atomic transaction covers both
aspects - domain name transfer and payment for the transfer, and
ensures that they are treated as one logical operation.
The below procedures are used to prepare an atomic transaction
which will cover the whole sales/registration process.

 ​30

I. bst-cli namerawtransaction ​which adds the name transaction
to the new raw transaction. To create a new transaction, use
Createrawtransaction ​procedure.
It requires the following 3 parameters:

● The transaction hex string
● The vout of the desired name output
● Json object for name operation, where name_op can be any of

the following:
1. Name_new (to create a new name entry in the

database)
2. Name_firstupdate (to update a newly created name, and

add ownership and expiry, or description/data)
3. Name_update (to update a name that already exists and

is in use)
Usage example:
bst-cli namerawtransaction

8a592b73a8beb79cd0d73fc9bfb7c55de825ca981b5e35654cd22

28703694357582528d8ab01ffffffff03ca9a3b1976a9143c4b7d

4b93bc6194087bbbc422fd6cd1a40f820e88ac60ed3877161976a

914ab96be7f12bd38dd25b62be02b88ac40420f3f5310642f6d79

2d636f6f6c2d646f6d61696e117468616e6b732066726f6d20536

16c6c796d7576a914ad4a0929e9c7c95910534b93ec0727058a27

f2b988ac7102aabfac0ee6277ca45bccca1f98453101143993970

19ea12c8e243eb8839fed12ffffffff 1 {“op”:”name_new”,

“name”:”mydomain.com”}

RETURN:
25b62be02b88ac40420f3f5310642f6d792d636f6f6c2d646f6d6

1696e117468616eb79cd0d73fc9bfb7c55de825ca981b5e35654c

d2228703694357582528d8ab01ffffe6b732066726f6d2053616c

6c796d7576a914ad77ca45bccca1f9845310114399397019ea12c

8e243eb8839fed12fff4a09298fffffa592b73a8bffff03ca9a3b

1976a9143c4b7d4b93bc6194087bbbc422fd6cd1a40f820e88ac6

0ed3877161976a914ab96be7f12bd38dde9c7c95910534b93ec07

27058a27f2b988ac7102aabfac0ee62

II. bst-cli Createrawtransaction ​which creates a transaction
spending the given inputs (array containing txid and vout) and creating
new outputs. Outputs can be an array of addresses or data. It returns
hex-encoded raw transaction.
Note that the transaction's inputs are not signed, and it is not stored in
the wallet or transmitted to the network. In order to sign a raw
transaction, please use ​Signrawtransactionwithkey​, in order to
send the transaction to the network, use ​Sendrawtransaction.
Usage example:

 ​31

bst-cli Createrawtransaction [{“txid”:

“460ff04e500afd4c6164d70f0421b44e8d4979dfc11f33bf7f7c

f3ad45333bb5”, “vout”:0},

{“34FYZErJ3CzdtQTjzxGyTPVrYBZAzeKKw4”:1.00,

“3G8upiyMDTaA6YYiHUoUyikuBewoLGsuGt”:3.20}]

RETURN:
c9bfb7c55de825be7f12bd38dd25b62be02b88ac40420f3f53106

42f6d792d636f6f6c2d646f6d61696e117468616e6b732066726f

6d2053616c6c796d7576a914ad4a0929e9c7c95910534b93ec072

7058a27f2b988ac7102aabfac0ee6277ca45bccca1f9845310114

399397019ea12c8e243eb8839fed12ffffffff8a592b73a8beb79

cd0d73fca981b5e35654cd2228703694357582528d8ab01ffffff

ff03ca9a3b1976a9143c4b7d4b93bc6194087bbbc422fd6cd1a40

f820e88ac60ed3877161976a914ab96

III. bst-cli Decoderawtransaction ​which decodes hex-encoded
transaction, e.g. the product of ​Createrawtransaction​. It returns a
JSON object representing the serialized, hex-encoded transaction.
Usage example:
bst-cli Decoderawtransaction

c9bfb7c55de825be7f12bd38dd25b62be02b88ac40420f3f53106

42f6d792d636f6f6c2d646f6d61696e117468616e6b732066726f

6d2053616c6c796d7576a914ad4a0929e9c7c95910534b93ec072

7058a27f2b988ac7102aabfac0ee6277ca45bccca1f9845310114

399397019ea12c8e243eb8839fed12ffffffff8a592b73a8beb79

cd0d73fca981b5e35654cd2228703694357582528d8ab01ffffff

ff03ca9a3b1976a9143c4b7d4b93bc6194087bbbc422fd6cd1a40

f820e88ac60ed3877161976a914ab96

RETURN:
{

 "txid":

"ad22e94a210df8ca340c208cdbc09d1e42775a03bb32b4db113e

76fb374b6495",

 "hash":

"e5ec499bd7cec80a502252c25fca1df8de6876682b149e7ee4b6

da447c0833b7",

 "version": 2,

 "size": 388,

 "vsize": 225,

 "weight": 898,

 "locktime": 37932,

 "vin": [

 {

 "txid":

 ​32

"139c224c6ea460c7fb081c6e404a22e23d8afe666d742b001021

9f53ccbace18",

 "vout": 0,

 "scriptSig": {

 "asm":

"0014b0b8ce35b26784d89431e15cecf025eed121d07c",

 "hex":

"160014b0b8ce35b26784d89431e15cecf025eed121d07c"

 },

 "txinwitness": [

"3045022100b9a53ac49bd2bef1c0fd07f34588d536aee166f5bf

c047f75f17bc687699b5f4022064c6471d58a7705196bfd9272b0

4ca1b9ea05ff51cafffa85d252c308680fd7201",

"03d14ee6f062e0cfcb7c5a9502a357ace8f7e2c07e96ec28d154

6633c673a8970e"

],

"Value": 1

"sequence": 4294967293

 },

 {

 "txid":

"3ff20f34d7790e4ba90f3914df511a86fc47ccbbb36ad154a612

0931f57a901a",

 "vout": 0,

 "scriptSig": {

 "asm":

"0014b0b8ce35b26784d89431e15cecf025eed121d07c",

 "hex":

"160014b0b8ce35b26784d89431e15cecf025eed121d07c"

 },

 "txinwitness": [

"3045022100aeb015980ee237b8322af2e7f74b37c96b163fbffa

7099e8947a285765c596e302206cf805e54d5d5c3d89c3602e150

b2319d1749cbe982c99caf35bdda46babbd8701",

"03d14ee6f062e0cfcb7c5a9502a357ace8f7e2c07e96ec28d154

6633c673a8970e"

],

 "sequence": 4294967293

 }

 ​33

],

 "vout": [

 {

 "value": 1,

 "n": 0,

 "scriptPubKey": {

 "asm": "OP_HASH160

4244f06d6f6f29a69f259235bba944caca4edc11 OP_EQUAL",

 "hex":

"a9144244f06d6f6f29a69f259235bba944caca4edc1187",

 "reqSigs": 1,

 "type": "scripthash",

 "addresses": [

 "37jR7BWh6DhofUftXEBCMHD53FGwG4ckJK"

]

 }

 },

{

 "value" : 0.01000000,

 "n" : 2,

 "scriptPubKey" : {

 "nameOp" : {

 "op" : "name_update",

 "name" : "mydomain.com",

 "value" : "as agreed"

 },

 "asm" : "NAME_OPERATION OP_DUP OP_HASH160

ad4a0929e9c7c95910534b93ec0727058a27f2b9 OP_EQUAL",

 "hex" :

"5310642f6d792d636f6f6c2d646f6d61696e117468616e6b7320

66726f6d2053616c6c796d7576a914ad4a0929e9c7c95910534b9

3ec0727058a27f2b988ac",

 "reqSigs" : 1,

 "type" : "pubkeyhash",

 "addresses" : [

"0014b0b8ce35b26784d89431e15cecf025eed121d07c"

]

 }

 }

]

}

 ​34

IV. bst-cli Combinerawtransaction ​which combines multiple
partially signed transactions into one transaction. The combined
transaction may be another partially signed transaction or a fully
signed transaction. It accepts an array of hex-encoded transactions
(strings) and returns a hex-encoded ​signed​ transaction.
Usage example:
bst-cli Combinerawtransaction
e9c7c95910534b93ec0727058a27f2b988ac7102aabfac0ee6277

ca45bccca1f9845310114399397019ea12c8e243eb8839fed12ff

ffffff8a592b73a8beb79cd0d73fc9bfb7c55de825ca981b5e356

54cd2228703694357582528d8ab01ffffffff03ca9a3b1976a914

3c4b7d4b93bc6194087bbbc422fd6cd1a40f820e88ac60ed38771

61976a914ab96be7f12bd38dd25b62be02b88ac40420f3f531064

2f6d792d636f6f6c2d646f6d61696e117468616e6b732066726f6

d2053616c6c796d7576a914ad4a0929,

C9bfb7c55de825be7f12bd38dd25b62be02b88ac40420f3f53106

42f6d792d636f6f6c2d646f6d61696e117468616e6b732066726f

6d2053616c6c796d7576a914ad4a0929e9c7c95910534b93ec072

7058a27f2b988ac7102aabfac0ee6277ca45bccca1f9845310114

399397019ea12c8e243eb8839fed12ffffffff8a592b73a8beb79

cd0d73fca981b5e35654cd2228703694357582528d8ab01ffffff

ff03ca9a3b1976a9143c4b7d4b93bc6194087bbbc422fd6cd1a40

f820e88ac60ed3877161976a914ab96

RETURN:
8a592b73a8beb79cd0d73fc9bfb7c55de825ca981b5e35654cd22

28703694357582528d8ab01ffffffff03ca9a3b1976a9143c4b7d

4b93bc6194087bbbc422fd6cd1a40f820e88ac60ed3877161976a

914ab96be7f12bd38dd25b62be02b88ac40420f3f5310642f6d79

2d636f6f6c2d646f6d61696e117468616e6b732066726f6d20536

16c6c796d7576a914ad4a0929e9c7c95910534b93ec0727058a27

f2b988ac7102aabfac0ee6277ca45bccca1f98453101143993970

19ea12c8e243eb8839fed12ffffffff

V. bst-cli Sendrawtransaction ​which submits raw transaction
(serialized, hex-encoded) to local node and network. It accepts hex of a
signed raw transaction as input, and returns transaction hash.
Usage example:
bst-cli Sendrawtransaction

8a592b73a8beb79cd0d73fc9bfb7c55de825ca981b5e35654cd22

28703694357582528d8ab01ffffffff03ca9a3b1976a9143c4b7d

4b93bc6194087bbbc422fd6cd1a40f820e88ac60ed3877161976a

914ab96be7f12bd38dd25b62be02b88ac40420f3f5310642f6d79

2d636f6f6c2d646f6d61696e117468616e6b732066726f6d20536

16c6c796d7576a914ad4a0929e9c7c95910534b93ec0727058a27

 ​35

f2b988ac7102aabfac0ee6277ca45bccca1f98453101143993970

19ea12c8e243eb8839fed12ffffffff

RETURN:
460ff04e500afd4c6164d70f0421b44e8d4979dfc11f33bf7f7cf

3ad45333bb5

VI. bst-cli signrawtransactionwithkey ​which signs raw
transaction (serialized, hex-encoded). The second argument is an array
of base58-encoded private keys that will be the only keys used to sign
the transaction. The third optional argument (may be null) is an array
of previous transaction outputs that this transaction depends on but
may not yet be in the blockchain. It returns signed transaction hex,
completion status (true/false) with errors in case of any.
bst-cli signrawtransactionwithkey

8a592b73a8beb79cd0d73fc9bfb7c55de825ca981b5e35654cd22

28703694357582528d8ab01ffffffff03ca9a3b1976a9143c4b7d

4b93bc6194087bbbc422fd6cd1a40f820e88ac60ed3877161976a

914ab96be7f12bd38dd25b62be02b88ac40420f3f5310642f6d79

2d636f6f6c2d646f6d61696e117468616e6b732066726f6d20536

16c6c796d7576a914ad4a0929e9c7c95910534b93ec0727058a27

f2b988ac7102aabfac0ee6277ca45bccca1f98453101143993970

19ea12c8e243eb8839fed12ffffffff

[{5Kb8kLf9zgWQnogidDA76MzPL6TsZZY36hWXMssSzNydYXYB9KF

}]

RETURN:
D6cd1a40f820e88ac60ed3877161976a914ab96be7f12bd38dd25

b62be02b88ac40420f3f53128d8ab01ffff0642f6d792d636f6f6

c2d646f6d61696e117468616e6b732066726f6d2053616c6c796d

7576a914ad4a0929e9c7c95910534b93ec0727058a27f2b988ac7

102aabfac0ee6277ca45bccca1f9845310114399397019ea12c8e

243eb8839fed12ffffffff8a592b73a8beb79cd0d73fc9bfb7c55

de825ca981b5e35654cd22287036943575825ffff03ca9a3b1976

a9143c4b7d4b93bc6194087bbbc422f, true

2.4.4. Workflow example
In a theoretical scenario, John owns a domain mydomain.com which
Mary is interested in. Mary can use ​bst-cli name_show
mydomain.com ​to find details about who owns the domain and how
the domain can be obtained. The command returns the following info:
mydomain.com,

“current price 1BST paid to

34FYZErJ3CzdtQTjzxGyTPVrYBZAzeKKw4”

3G8upiyMDTaA6YYiHUoUyikuBewoLGsuGt

 ​36

Which means that mydomain.com is for sale at 1BST price. The money
needs to be transferred to the wallet address provided in the data info.
The wallet containing the domain name is the bottom one.
If Mary wants the domain for 1BST, she needs to prepare an atomic
transaction that will contain both the transfer and the payment.
First, she needs to prepare the payment information, i.e. the
transaction id of a transaction which unspent output can cover the
transfer, and the vout of the transaction output to be used. For
example, if Mary owns 4 BST from an unspent transaction, she needs
to send 1BST to John and the rest to a wallet she creates for the
purpose. Given that the vout to be used is the first on the list, its
number is 0.
Based on that info, she can create a new raw transaction. See the
example below:

bst-cli Createrawtransaction [{“txid”:

“460ff04e500afd4c6164d70f0421b44e8d4979dfc11f33bf7f7c

f3ad45333bb5”, “vout”:0},

{“34FYZErJ3CzdtQTjzxGyTPVrYBZAzeKKw4”:1.00,

“3G8upiyMDTaA6YYiHUoUyikuBewoLGsuGt”:3.20}]

Next, Mary needs to create name_operation details and add them to
the raw transaction by using namerawtransaction. For example:

bst-cli namerawtransaction

8a592b73a8beb79cd0d73fc9bfb7c55de825ca981b5e35654cd22

28703694357582528d8ab01ffffffff03ca9a3b1976a9143c4b7d

4b93bc6194087bbbc422fd6cd1a40f820e88ac60ed3877161976a

914ab96be7f12bd38dd25b62be02b88ac40420f3f5310642f6d79

2d636f6f6c2d646f6d61696e117468616e6b732066726f6d20536

16c6c796d7576a914ad4a0929e9c7c95910534b93ec0727058a27

f2b988ac7102aabfac0ee6277ca45bccca1f98453101143993970

19ea12c8e243eb8839fed12ffffffff 1

{“op”:”name_update”, “name”:”mydomain.com”

“value”:”not for sale”}

The transaction needs to be signed before it is sent for verification to
John. For that purpose, Mary can use ​bst-cli
signrawtransactionwithkey ​using the transaction hex obtained
as a result of​ namerawtransaction. ​Mary can either use her
private key stored locally, or an existing key that she stored in the
blockchain.

 ​37

The hex of the partially signed transaction can be sent to John, who
can decode the transaction in order to verify it.
If John is happy with the transaction, he can sign it with a key and
send it to the blockchain using ​bst-cli Sendrawtransaction​. In
return he will get a hash of the transaction. When the transaction is
confirmed, the operations take place and Mary becomes the new
owner of mydomain.com.

2.5. Desktop application & Wallet
The desktop application serves as a desktop interface to the blockchain. The
application offers the below described functionalities. In addition to that, it
also allows to encrypt the wallet, sign or verify message. The latter can be
used in the above scenario, for DNS raw transaction signing.

2.5.1. Value transfer
Desktop application can be used to send and request/receive value
transfers in BST.

 ​38

The transfer tab allows user to define the fee and choosing
confirmation target time by selecting from the recommended fees or
defining one's own.

2.5.2. Gaming
The application provides betting interface for lottery and roulette. It
allows to define numbers and probability (modulo) for lottery or select
bet type for roulette.

As in the value transfer, Bets tab also allows users to define the fee
they want to pay, or even select 0.00 BST fee.

2.5.3. Data
Data tab provides three basic functionalities - Store, Retrieve, and
Check.

 ​39

Store option allows to store a message, a file, or a file signature in the
blockchain. Again, it allows to define the fee one wants to pay.

Retrieve option returns content of a transaction in String or Hex. It also
allows to store the content in a file.

Check option allows to verify content of a transaction and compare it
with data provided by user (in a file or message).

 ​40

3. Appendix 1 - bet types, syntax, and numbers
1. straight: straight_1, straight_2, ...,straight_36.
2. split:

split_1={1, 4},
split_2={4, 7},
split_3={7, 10},
split_4={10, 13},
split_5={13, 16},
split_6={16, 19},
split_7={19, 22},
split_8={22, 25},
split_9={25, 28},
split_10={28, 31},
split_11={31, 34},
split_12={2, 5},
split_13={5, 8},
split_14={8, 11},
split_15={11, 14},
split_16={14, 17},
split_17={17, 20},
split_18={20, 23},
split_19={23, 26},
split_20={26, 29},
split_21={29, 32},
split_22={32, 35},
split_23={3, 6},
split_24={6, 9},

 ​41

split_25={9, 12},
split_26={12, 15},
split_27={15, 18},
split_28={18, 21},
split_29={21, 24},
split_30={24, 27},
split_31={27, 30},
split_32={30, 33},
split_33={33, 36},
split_34={1, 2},

 split_35={2, 3},
 split_36={4, 5},
 split_37={5, 6},
 split_38={7, 8},
 split_39={8, 9},
 split_40={10, 11},
 split_41={11, 12},
 split_42={13, 14},
 split_43={14, 15},
 split_44={16, 17},
 split_45={17, 18},
 split_46={19, 20},
 split_47={20, 21},
 split_48={22, 23},
 split_49={23, 24},
 split_50={25, 26},
 split_51={26, 27},
 split_52={28, 29},
 split_53={29, 30},
 split_54={31, 32},
 split_55={32, 33},
 split_56={34, 35},
 split_57={35, 36}
3. street:
 street_1={1, 2, 3},
 street_2={4, 5, 6},
 street_3={7, 8, 9},
 street_4={10, 11, 12},
 street_5={13, 14, 15},
 street_6={16, 17, 18},
 street_7={19, 20, 21},
 street_8={22, 23, 24},
 street_9={25, 26, 27},

 ​42

 street_10={28, 29, 30},
 street_11={31, 32, 33},
 street_12={34, 35, 36}
4. corner:
 corner_1={1, 2, 4, 5},
 corner_2={4, 5, 7, 8},
 corner_3={7, 8, 10, 11},
 corner_4={10, 11, 13, 14},
 corner_5={13, 14, 16, 17},
 corner_6={16, 17, 19, 20},
 corner_7={19, 20, 22, 23},
 corner_8={22, 23, 25, 26},
 corner_9={25, 26, 28, 29},
 corner_10={28, 29, 31, 32},
 corner_11={31, 32, 34, 35},
 corner_12={2, 3, 5, 6},
 corner_13={5, 6, 8, 9},
 corner_14={8, 9, 11, 12},
 corner_15={11, 12, 14, 15},
 corner_16={14, 15, 17, 18},
 corner_17={17, 18, 20, 21},
 corner_18={20, 21, 23, 24},
 corner_19={23, 24, 26, 27},
 corner_20={26, 27, 29, 30},
 corner_21={29, 30, 32, 33},
 corner_22={32, 33, 35, 36}
5. line:
 line_1={1, 2, 3, 4, 5, 6},
 line_2={4, 5, 6, 7, 8, 9},
 line_3={7, 8, 9, 10, 11, 12},
 line_4={10, 11, 12, 13, 14, 15},
 line_5={13, 14, 15, 16, 17, 18},
 line_6={16, 17, 18, 19, 20, 21},
 line_7={19, 20, 21, 22, 23, 24},
 line_8={22, 23, 24, 25, 26, 27},
 line_9={25, 26, 27, 28, 29, 30},
 line_10={28, 29, 30, 31, 32, 33},
 line_11={31, 32, 33, 34, 35, 36}
6. column:
 column_1={1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34},
 column_2={2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35},
 column_3={3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36}
7. dozen:

 ​43

 dozen_1={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
 dozen_2={13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24},
 dozen_3={25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
8. low:

low={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
9. high:

high={19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
10. even:

even={2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36}
11. odd:

odd={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35}
12. black:

black={2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35}
13. red:

red={1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36}

 ​44

