
Lien FairSwap White Paper

Lien Protocol∗

Version 1.0: April 27, 2020

Abstract

In our first white paper (Lien Protocol 2020), we proposed a new type of stable

coin, iDOL. The price stability of iDOL is ensured by speculators who are willing to

take on the risk associated with the price fluctuation of Ether (ETH). This is achieved

by those speculators holding a derivative token, named Liquid Bond Token (LBT).

However, as LBT is a brand new class of derivative token, currently there is no market

where the token is actively traded.

In this paper, we propose Lien FairSwap, a decentralized exchange (DEX) platform

that provides an opportunity to trade cryptoassets based on the Constant Product Mar-

ket Maker model. The platform also incorporates the idea of frequent batch auction

and is designed to be robust against front-running. Our design also introduces a mech-

anism for dynamically adjusting the commission rates based on the market condition.

While the platform will specifically serve as a market for trading LBTs within the Lien

protocol, other decentralized finance (DeFi) protocols may also benefit from the use of

the core mechanisms utilized by the platform.

∗Contact Author: lien-protocol@protonmail.com

1

lien-protocol@protonmail.com


1 Introduction

1.1 Speculators: Essential Part of the iDOL Ecosystem

In April 2020, the Lien Protocol released the white paper on the stable coin, iDOL. The

stability of the iDOL price (i.e. its fiat exchange rate) is supported by the investors who

insure the fiat exchange rate risk for a profit.

To supply a stable coin, Lien initially splits Ether into two parts, the Solid Bond Token

(SBT) and the Liquid Bond Token (LBT). The LBT holder undertakes all the exchange-rate

risk as long as the USD/ETH exchange rate remains higher than a certain threshold. Thanks

to this “tranching”, SBT becomes an “almost risk-free” asset, whose value denominated in

USD is insensitive to changes in the USD/ETH exchange rate. Our stable coin, the iDOL

token, is a representative money backed by a basket of SBTs, each of which is provided with

unique configurations. See our white paper (Lien Protocol 2020) for more details on the

iDOL ecosystem.

The iDOL token is minted when a user deposits an SBT to the iDOL contract. To deposit

an SBT, the user must first create it by tranching Ether, which then generates an SBT and

an LBT. LBT is an attractive asset for speculators as it allows them to engage in leveraged

trading. Furthermore, leveraged trading with LBT is less risky than leveraging through debt

finance because the speculator does not have to provide a collateral to conduct the leveraged

transaction. Accordingly, there is no margin call involved even if the exchange rate (i.e. the

price of ETH) falls significantly.

Given that a majority of people participating in the cryptocurrency market are holding

cryptocurrencies while hoping to make a profit through price appreciation, we can expect to

see large demand for LBTs coming from those speculators who want to hold LBTs to engage

in leveraged trading. However, since LBT is a new type of derivative token, currently there

is no market available where it is actively traded.

The iDOL ecosystem needs involvement of speculators who are motivated to hold LBTs.

2



Figure 1: The iDOL ecosystem

For this reason, we provide a marketplace for trading LBTs in addition to a system for

issuing a stable coin (iDOL). Here, because we are a team of anonymous individuals, the

way we try to cultivate “trust” in the system is by developing the marketplace in the form

of a decentralized exchange (DEX), a smart contract that allows users to trade cryptoassets.

Extending the idea of the Constant Product Market Maker model, we develop a secure,

efficient, and low-cost marketplace for trading LBTs. Although the marketplace is designed

to provide liquidity for LBTs, it can also be applied to the market design of any other token

as well.

1.2 LBT as a Leveraged Token

In the iDOL ecosystem, you can create a stable asset by splitting Ether into two derivative

tokens: Solid Bond Token (SBT) and Liquid Bond Token (LBT). First, Q ETH is deposited

to a smart contract for the issuance of SBT and LBT. Then, on the maturity date, the

contract returns a payout of K USD to the SBT holder whenever possible, and returns the

rest to the LBT holder. Specifically, when the USD/ETH exchange rate on the maturity date

is P1, the smart contract returns min{K/P1, Q} ETH to the SBT holder, and distributes

3



(a) Decomposition of Ether (b) Payout of LBT

Figure 2: By tranching Ether, we can create a stable asset (SBT) and a leveraged token
(LBT).

the rest of the deposit, Q−min{K/P1, Q} = max{Q−K/P1, 0} ETH, to the LBT holder.

In other words, LBT functions as an European call option that gives its holder the right to

buy Q ETH at K USD on the maturity date.

The value of SBT in USD is kept stable: as long as Q ≥ K/P1 or, equivalently, P1 ≥ K/Q,

the value of the SBT will be K/P1 ETH = K USD on the maturity date. Then, we can

create a basket of SBTs and have it back up the value of iDOL, the stable coin. For further

details, read the iDOL white paper (Lien Protocol 2020).

The stability of the SBT value is based upon the instability of the LBT value. That is,

all the risks related to the price volatility of Ether are undertaken by the LBT holder, which

then makes the value of SBT stable. We can think of LBT as a leveraged derivative token,

the value of which is associated with Ether but fluctuates much more than Ether.

While there already exist various ways to conduct leveraged trading in the cryptocurrency

market, the characteristics of the LBT token described above will make it an attractive

vehicle with which to speculate on the price development of Ether.

4



Price LBT holders can collect a “premium” from SBT holders or iDOL holders — because

SBT holders and iDOL holders are risk hedgers who wish to hedge against the volatility of

the price of Ether, they should be willing to pay an “insurance fee” to LBT holders who can

take on the exchange-rate risk for a profit. By contrast, if an investor tries to establish a

leveraged position through margin trading in a traditional market, he must pay commissions

rather than being paid to undertake risks.

No Margin Call No debt finance is needed when you hold an LBT. For this reason, no

margin call will be involved even if the price of Ether drops significantly. Therefore, the

value of LBT never becomes negative even in the worst case scenario: you can simply release

the token if it becomes worthless.

No Counterparty Risk To generate SBTs and LBTs, one needs to deposit Ether to a

smart contract. After the derivative contract is run, it will automatically distribute the

value of these tokens into their respective holders on the maturity date. Hence, there is no

counterparty risk from the LBT holder’s point of view.

It is also worth noting that leveraging through LBT would also contribute to financial

stability in general — highly leveraged margin trading is one of the principal factors that

could cause a financial crisis. When an asset value declines, the margin deposits are wiped

out, forcing the investor to add to the deposit. Then, the investor has to sell more of his

assets to keep liquidity, and the selling pressure causes the asset price to decline even further.

However, LBT is free from this problem because its value does not rely on debt finance at

all.

5



2 Preliminary: Constant Product Market

2.1 How it works

In the Constant Product Market Maker model, a market maker, also called a liquidity

provider, provides an opportunity to exchange two assets. In a normal implementation,

one of the assets is Ether (ETH) and the other is a financial asset token whose ownership

is managed on the Ethereum blockchain (e.g. stable coins issued by various DeFi projects).

We plan to open marketplaces for exchanging ETH, iDOL, and LBT with support for var-

ious maturity dates. However, for the sake of discussion, we will take a hypothetical token

“ABC” and look at how the liquidity provider within this marketplace can allow us to “buy”

and “sell” the ABC token in exchange for Ether.

The design of Lien FairSwap is based on the Constant Product Market Maker model,

proposed in a reddit post by Vitalik Buterin.1 Later, several decentralized finance (DeFi)

projects implemented Buterin’s idea and provided various DEX platforms based on this

model, Uniswap being a primary example.

In contrast to the system designs adopted by traditional stock market exchanges, the

asset price (e.g. the ETH/ABC exchange rate) is not “pre-specified” within the Constant

Product Market Maker model. Instead, the marketplace algorithmically “adjusts” the price

based on the inputs from buyers and sellers so as to eliminate arbitrage opportunities.

When a liquidity provider opens a marketplace, the provider pools these two traded assets

(ETH and ABC). Any user can submit a buy order (i.e. send ETH to receive ABC) or a sell

order (i.e. send ABC to receive ETH) in the marketplace. When a buy order is made, the

user puts ETH into the ETH pool and takes ABC from the ABC pool. When the marketplace

is closed, the liquidity provider redeems all the ETH and ABC tokens from the pool. Orders

are written as transactions which will be sent through the Ethereum blockchain.
1https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_

exchanges_the_way/, accessed on April 10th, 2020. See also Lu (2017) and Angeris, Kao, Chiang, Noyes,
and Chitra (2019).

6

https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/


Now, assume that X ETH and Y ABC are currently pooled. The price of the ABC

token (denominated in ETH) is determined by the ratio of X to Y . To simplify, we ignore

the commissions paid by users to the liquidity provider for now and focus on the basic idea

behind how the Constant Product Market Maker model works.

Let us suppose that a user sends a buy order to the marketplace. To place a buy order,

the user must transfer to the marketplace the amount of “money” (ETH) he wants to spend.

Here, when the marketplace receives ∆x ETH from the user, it determines the amount of

the ABC tokens the user can receive, ∆y ABC, by solving the following equation:

(X + ∆x)(Y −∆y) = XY.

As you can see, the product of the two factors remains constant, which is why this model is

called the Constant Product Market Maker model. The marketplace always holds constant

the product of X and Y , or the amount of ETH and ABC held by the marketplace. Solving

the above equation for ∆y, we have:

∆y =
∆x · Y
X + ∆x

.

Hence, the price (i.e. the price of ABC denominated in ETH) the user needs to pay to obtain

the ABC token will be:
∆x

∆y
=
X + ∆x

Y
(ETH/ABC).

This value increases as ∆x increases. In other words, the more ABC the user wants to buy,

the more ETH he has to pay. Hence, the ask price, which is the best possible price proposed

by the market maker to a buyer of the ABC token, is X/Y ETH/ABC.

We can derive the best price proposed to a seller in a similar manner. If the user transfers

∆y ABC to be sold in the marketplace, the amount of ETH provided by the marketplace

7



(∆x ETH) can be calculated with the following equation:

(X −∆x)(Y + ∆y) = XY.

Solving this equation for ∆x, we have:

∆x =
X ·∆y
Y + ∆y

.

Hence, the price the marketplace pays to the user is:

∆x

∆y
=

X

Y + ∆y

This value decreases as ∆y increases. As a result, the more ABC the user wants to sell, the

lower the price of each token will be. Consequently, the bid price, which is the best possible

price proposed by the market maker to a seller, is X/Y ETH/ABC.

If we ignore the commissions paid to the validators and the liquidity provider, the Con-

stant Product Market Maker model always allows for buying and selling the ABC token at

the price of X/Y ETH/ABC. If the price of the ABC token differs from X/Y ETH/ABC

outside this market, the user can take advantage of the arbitrage opportunity, resulting in

the ratio of X to Y being fixed immediately, provided that the market is efficient. Accord-

ingly, the price proposed in this model, i.e. X/Y ETH/ABC, will always be adjusted to the

broader market price. Therefore, the Constant Product Market Maker model can always

propose a fair price to the users. Since X/Y can take any value between 0 and +∞, there

is no risk of the ratio being “stuck” in a certain range or value. Hence, the marketplace can

keep operating even when drastic changes in price occur.

Practically, the liquidity provider should take some commissions from users. Similar to

market makers in the traditional stock exchange markets, the liquidity provider is providing

a market for trading, thereby creating value for its users. If the users were allowed to benefit

8



from this option for free, the liquidity provider would incur losses, there being no incentive

for people to provide liquidity. To address this problem, the liquidity provider should take

some commissions every time a trade occurs.

Remark 1. When a liquidity provider launches a marketplace, he should choose X and Y in

such a way that X/Y coincides with the ETH/ABC exchange rate of the outside market.

Otherwise, arbitragers immediately take advantage of the mispricing and exploit the liquidity

provider until X/Y reaches the exchange rate accepted in a broader market.

2.2 Front-Running

Although the Constant Product Market Maker model comes equipped with sound theoretical

properties, its ideal implementation is not trivial due to several technological limitations

within a blockchain system. If we näıvely implement the Constant Product Market Maker

model, an arbitrager may exploit some of the inherent inefficiencies in DEX platforms.2

Let us take Uniswap as an example. In Uniswap, both buy and sell orders are processed

one by one — every time the marketplace finds a new order, it updates the market price and

adjusts the balance of the pool. Typically, multiple orders are contained in one block, and

these orders (transactions) are sorted by the block creator. Uniswap processes transactions

serially, in a deterministic order (a transaction that is located at the top of the block is

processed earlier). This is the simplest implementation of the Constant Product Market

Maker model that was described in the previous subsection.

To understand the vulnerability of Uniswap, we should be aware of the following prop-

erties associated with blockchain systems in general. First, transactions on a blockchain are

processed in a discrete manner. The Ethereum network appends a new block every 10 to

20 seconds when its difficulty adjustment algorithm functions properly, which means that

transactions are never processed immediately — even in the best case scenario, a user needs
2Daian, Goldfeder, Kell, Li, Zhao, Bentov, Breidenbach, and Juels (2019) study the activities of DEX

arbitrage bots.

9



to wait for one new block to be added to the blockchain before his transaction can be pro-

cessed.3 Second, pending transactions are publicly visible. All the pending transactions are

stored in a mempool, from which validators pick transactions to create a new block. Given

that anyone is allowed to work as a validator in a public blockchain network, people can eas-

ily check the details of those pending transactions. As a result, they can observe the orders

sent to Uniswap along with their details. Finally, users can control the order of transaction

processing. Usually, the validators in the Ethereum network put transactions in descending

order based on their gas prices, allowing people to select the relative position of their trans-

actions within a new block by configuring the gas prices. Additionally, the validators can

freely change the order of the transactions contained in the new block he created, if he so

chooses.

These specifications of the Ethereum blockchain make it easy to exploit the Uniswap

system; an arbitrager can take advantage of those characteristics to make a profit through

front-running.

There arises an opportunity for front-running anytime a user (who is different from the

arbitrager) conducts a high value transaction. For example, suppose that the ask price

(= X/Y ETH/ABC) proposed after the previous block had been processed was P0 and,

observing this, a user submitted a large buy order. The order, written as an Ethereum

transaction request, is initially stored in the mempool. Once an arbitrager finds the transac-

tion request, he can send buy orders and sell orders, both of which contain (approximately)

the same volume. Therefore, after both transactions are processed, the arbitrager does not

hold any position for the ABC token.

The arbitrager then adjusts the gas price in such a way that the transactions are processed

in the following order: (i) the arbitrager’s buy order, (ii) the user’s buy order, and finally

(iii) the arbitrager’s sell order. Since the arbitrager’s buy order is processed first, the ask

price proposed to the arbitrager, P1(> P0), is close to the ask price of the previous block,
3Sometimes, the user would need to wait more because the validators cannot accommodate all transactions

into the new block if there are many pending transactions.

10



P0. Since the arbitrager made a large buy order, after (i) is processed, the price will have

increased. Hence, the user is presented with a higher, and less desirable, price, P2(> P1 >

P0). Consequently, when the arbitrager’s sell order, i.e. (iii), is processed, the arbitrager can

benefit from a higher price than the original one — if the arbitrager sends a sufficiently small

volume (slightly smaller than the volume of the user’s buy order), the arbitrager can make

a profit of P3 (P2 > P3 > P1) per token. Hence, the arbitrager can buy the ABC tokens at

P1 and sell them at P3, effectively enjoying a “free lunch”. On the other hand, the user ends

up buying the ABC token at a higher price because of the arbitrager’s activity. A platform

that allows such an exploitation does not appeal to users because they might unwillingly

lose their money.

2.3 Price Slippage Limit

The front-running problem happens because the price is adjusted too often compared with

the frequency with which a block arrives. This allows an attacker to manipulate the price

so as to exploit normal users. In the above example, when the user sent a buy order, he

observed P0 as the ask price. However, the actual price proposed to the user (P2) turned

out to be different from (and higher than) P0 because transactions that had been processed

earlier and were contained in the same block had influenced the price. This is called price

slippage.

Uniswap mitigates the front-running problem by allowing users to cancel orders when the

price slippage results in too large a price discrepancy. For example, in the above example,

the user can refuse to buy the ABC tokens when the price is higher than (1 + ε)P0, where

ε > 0 is the maximum price slippage that can be allowed. Once the slippage limit is specified,

the arbitrager is discouraged from buying a large amount of tokens because he cannot make

a profit when the user’s buy order is canceled. Even though arbitrage opportunity remains,

the arbitrager has to act within the following constraint: (1 + ε)P0 > P2 > P3 > P1 (> P0).

Accordingly, if ε is close to zero, the profit an arbitrager can make as well as the loss the

11



user incurs will become close to zero.

This solution has a drawback. To exclude the front-running opportunities, the users must

not tolerate price slippage. However, price slippage always occurs whenever new orders are

processed. In an extreme case, all the successive transaction requests in the same block might

be canceled after the first transaction is processed due to the first transaction causing price

slippage. In such a system, the marketplace would be able to process only one transaction

per each block. This means that only one user can make a trade for every 10 to 20 seconds.

Accordingly, such a system fails to provide enough liquidity to the market.

3 Lien FairSwap

3.1 Frequent Batch Auction + Constant Product Market Maker

Model

The front-running problem is not exclusive to DEX platforms and the Constant Product

Market Maker model. The problem also exists in a traditional stock exchange that uses an

order book. In fact, it has been reported that some high-frequency traders are exploiting

normal users through high-speed algorithmic trading. (Lewis 2014 details the rise of high-

frequency trading in the US market.)

A frequent batch auction proposed by Budish, Cramton, and Shim (2015) does not pro-

cess orders sequentially, i.e. one by one. Instead, time is treated as a discrete parameter

instead of a continuous measure, and orders are processed through batch auctions rather

than sequentially. While traders have the ability to place their orders in an interval of mil-

liseconds, the system itself does not allow transactions to be processed in milliseconds; the

system might hold an auction every tenth of a second, for example. While the speed with

which normal traders submit their orders is slower than high-frequency traders, an interval

of a tenth of a second would give normal traders some room for making more reasonable

decisions, thereby reducing opportunities for front-running.

12



The practice of front-running could cause more serious issues in a blockchain system.

Since block time is much slower than transaction speeds observed in traditional financial

markets, we do not actually need high-speed Internet connection at all in order to conduct

front-running on a DEX platform. To cut into a line of orders, it suffices to set a higher

gas price than the existing transactions. Accordingly, if the system processes transactions

sequentially, anyone can easily execute front-running by operating a bot. Hence, to establish

a safe and efficient DEX, it makes all the more sense to introduce a solution like frequent

batch auction. In addition, due to the discrete nature of a blockchain system, it is impossible

to process each transaction instantaneously, even if we want to design the system that way.

In this project, we establish Lien FairSwap, a DEX platform which incorporates the

idea of frequent batch auction and which, we believe, is an improvement over the Constant

Product Market Maker model. As in a Constant Product Market Maker model based system,

the price is determined based on the balance of the ETH and ABC tokens in the pool in

addition to the volumes of buy and sell orders. The difference between our model and the

original Constant Product Market Maker model as implemented in Uniswap is that we do

not process transactions serially. Rather, we form a batch of transactions and process them

simultaneously. Just like a frequent batch auction, Lien FairSwap is designed to be robust

against front-running.

3.2 Exchange Box

Because Lien FairSwap adopts the frequent batch auction mechanism, it does not process

orders one by one. Instead, Lien FairSwap introduces an exchange box, which is a batch

of all orders included in several neighboring blocks, and clears these orders simultaneously.

Orders included in the same exchange box are cleared with the same price (more precisely,

buyers will have to pay a slightly higher price than the one put forward by sellers because

they must pay commissions to the liquidity provider. The same applies on the seller’s side).

Batching eliminates the possibility of manipulating transaction order. Lien FairSwap does

13



not factor in the order of transactions — to the extent that transactions are included in the

same exchange box, the order by which they have been sent does not matter. Therefore, ar-

bitragers cannot exploit normal users by sandwiching transactions, making the front-running

activities unprofitable.

It is worth emphasizing that an exchange box includes multiple blocks. Hence, even the

validators cannot perfectly control which transactions are included into which exchange box

unless he has the ability to create multiple blocks in a row, which is highly unlikely.

3.3 Clearing Price

From here, we will describe how the price and quantity are determined for each trade. The

summary of the clearing procedure for exchange boxes is described in Subsection 3.6.

Since multiple transactions are contained in an exchange box, we must clear both buy

and sell orders simultaneously. We therefore need to extend the clearance rule described

in Subsection 2. Additionally, we will also incorporate the commissions into the model to

provide a more precise picture of the market design.

Suppose that the liquidity provider currently has X ETH and Y ABC in the pool. Then,

let us assume that we have buy orders whose volume is ∆X (≥ 0) ETH in total, and sell

orders whose volume is ∆Y (≥ 0) ABC in total. Later, we will explain how we derive ∆X

and ∆Y from the list of orders in an exchange box.

The buyers and sellers will be presented with the same exchange rate, P ETH/ABC.

Hence, the buyers get ∆X/P ABC in total whereas the sellers receive a total of ∆Y · P

ETH. The exchange rate P is determined in such a way as to satisfy the following formula:

(X + ∆X −∆Y · P )(Y + ∆Y −∆X/P ) = XY. (1)

The equation (1) requires that the multiple of the amount of the ETH tokens and the ABC

tokens held by the liquidity provider be constant. The liquidity provider initially has X ETH

14



and Y ABC in the pool. In this exchange box, the buyers additionally send ∆X ETH to the

pool (net of commissions), increasing the pool’s supply. At the same time, since the sellers

also send ∆Y ABC to receive the ETH tokens, the liquidity provider must transfer ∆Y · P

ETH to the sellers. In this exchange box, the sellers send ∆Y ABC (net of commissions),

and the liquidity provider must deliver ∆X/P ABC to the buyers.

Solving (1), we obtain the following two solutions:

P =
∆X

∆Y
, X + ∆X

Y + ∆Y
.

The former solution, P = ∆X/∆Y , completely ignores the role of the liquidity provider and

determines the price purely by comparing the amount of the buy and sell orders contained

in the current exchange box. This is not a desirable solution. We cannot expect all exchange

boxes to have the same balance between buy and sell orders. If the balance between ∆X

and ∆Y in a given exchange box differs significantly from the one in another exchange box,

either buyers or sellers in that exchange box will end up paying or receiving an unfair price.

In addition, if either ∆X or ∆Y is zero, the resulting price will end up being an impractical

value (i.e. zero or infinity). For this reason, we cannot adopt this price as the token’s

exchange rate.

The latter solution, P = (X + ∆X)/(Y + ∆Y ), corresponds to a generalization of the

pricing in the basic Constant Product Market Maker model; when there is only one order

included in the current exchange box, the price will be equal to the one derived in Section 2.

If the liquidity provider has a sufficiently large pool available, then the values of X and Y

will be much larger than the values of ∆X and ∆Y , and the price will be stabilized around

X/Y . As such, we adopt the latter solution.

15



3.4 Commissions and Aggregation Rule

To incentivize the liquidity provider to open a market, the marketplace should provide a

reward in the form of commissions. Lien FairSwap subtracts commissions in each order.

Let I and J be the set of buy and sell orders, respectively, in the current exchange box.

For each i ∈ I, xi ∈ R++ denotes the amount of the ETH tokens submitted by the buyer i,

and yj ∈ R++ signifies the amount of ABC tokens provided by the seller j.

The marketplace subtracts a fixed percentage, γ ∈ [0, 1), from the total amount and then

aggregates all the transactions to calculate the values of ∆X and ∆Y as follows:

∆X = (1− γ) ·
∑
i∈I

xi,

∆Y = (1− γ) ·
∑
j∈J

yj.

The buyer i receives (1− γ)xi/P ABC in exchange for xi ETH. As such, the actual price

the buyer will pay is:

xi
(1− γ)xi/P

=
P

1− γ
=

1

1− γ
· X + ∆X

Y + ∆Y
ETH/ABC.

Similarly, the seller j receives (1 − γ)yi · P ETH in exchange for yi ABC. Therefore, the

actual price the seller will receive is:

(1− γ)yiP

yi
= (1− γ) · P = (1− γ) · X + ∆X

Y + ∆Y
ETH/ABC.

Commissions are returned to the pool after the current exchange box is cleared. Thus,

although the product is kept at a constant value after the clearance, its value will increase

due to those commissions being added to the pool.

Remark 2. When LBT is included in a trading pair, we should not keep the commission rate

γ constant. Instead, we should adjust γ for every exchange box based on the price volatility

16



of LBT. See Section 4 for further details.

3.5 Price Slippage Limit and Rationing

Thus far, we have assumed that all the users accept any price slippage. This assumption is

impractical. Since the clearing price depends on the profile of the orders contained in a given

exchange box, users cannot perfectly foresee the price they will pay or receive. If a user finds

that the price slippage (i.e. the difference between the actual price ((X + ∆X)/(Y + ∆Y ))

and the benchmark price he observed (X/Y )) is too large, then he may want to cancel the

transaction ex post. As such, even though our market design excludes the opportunity for

front-running through a batching mechanism, users should also have the ability to cancel

orders to avoid a large price slippage.

In Lien FairSwap, users can make two different types of orders: limit order and market

order. A limit order is a type of order to buy or sell a token at a specific price (or at a

better price than the specific price). In the traditional order-book system, a user is allowed

to specify any price. In Lien FairSwap, however, the only price the user is allowed to specify

is the latest benchmark price, X/Y ETH/ABC. If the clearing price deviates so much from

X/Y ETH/ABC as to render a trade disadvantageous, the limit order will be canceled.4 On

the other hand, a market order is executed at a current market price, as long as the price

does not change dramatically.

Now, let t and T be the tolerance parameters for limit and market orders, respectively.

Suppose also that P0 = X/Y is the benchmark price and P the clearing price. As buyers

try to avoid a higher price, a buy limit order is guaranteed to be canceled if P > (1 + t)P0

and a buy market order is guaranteed to be canceled if P > (1 + T )P0. Likewise, because

sellers do not like selling at a lower price, a sell limit order is guaranteed to be canceled if

P < (1 + t)−1P0 while a sell market order is guaranteed to be canceled if P < (1 + T )−1P0.

Note that, as the design of Lien FairSwap is robust against front-running even if we do not
4Such orders are not carried over to the next exchange box.

17



limit price slippages, we do not have to choose small values for t and T in order to minimize

front-running. Accordingly, we can select relatively large values for t and T , and therefore,

Lien FairSwap has the advantage over Uniswap in being able to process transactions much

faster, etc.

The actual process of price determination is more involved because order cancellation

itself influences the price by changing the values of ∆X and ∆Y . To obtain an efficient

outcome, we must establish a reasonable way to ration orders in order to maximize the trade

volume while respecting the users’ tolerances for price slippage.

Orders will be rationed in the following manner. First, let ∆XL, ∆XM , ∆YL, and ∆YM

be the total volumes of buy limit orders, buy market orders, sell limit orders, and sell market

orders, respectively (net of commissions paid to the liquidity provider). We then sum up the

volumes of these four different orders separately.

In the beginning, Lien FairSwap checks whether all orders can be accommodated into

the current exchange box, with the initial price, P ∗, set as follows:

P ∗ =
X + ∆XL + ∆XM

Y + ∆YL + ∆YM
.

If all users accept P ∗, i.e. if (1 + t)−1P0 < P ∗ < (1 + t)P0 is satisfied, then the exchange box

is cleared at P ∗.

However, when the order volumes are unbalanced, P ∗ may deviate significantly from

P0, the benchmark price. In such a case, Lien FairSwap will adjust the price by rationing

the long-side orders. For example, let us assume that there are too many buy orders, and

therefore, P ∗ becomes larger than (1+t)P0. When this occurs, buyers who made limit orders

do not accept P ∗ and we must therefore cancel (some of) their orders. Here, after canceling

some limit orders, the price goes down and may become equal to (1 + t)P0.

Once the marketplace finds that P ∗ > (1+ t)P0, it computes the clearing price (P−) that

18



would be established if all the buy limit orders were canceled as follows:

P− =
X + ∆XM

Y + ∆YL + ∆YM
.

If P− ≤ (1 + t)P0, we can adjust the clearing price to (1 + t)P0 by cancelling some buy limit

orders. We find the volume of those buy limit orders to be processed, ∆X ′L ∈ [0,∆XL] , by

solving the following equation for ∆X ′L:

(1 + t)P0 =
X + ∆X ′L + ∆XM

Y + ∆YL + ∆YM
,

which gives us the following value:

∆X ′L = (1 + t)P0(Y + ∆YL + ∆YM)−X −∆XM .

In this case, the clearing price will become (1 + t)P0, and all the buy market orders, sell

limit orders, and sell market orders will be cleared. Note that only ∆X ′L/∆XL percent of the

buy limit orders are processed, and the remaining buy limit orders are canceled. All buyers

who submitted limit orders will incur the effect of cancellation equally — if the buyer i sent

a buy limit order whose volume is xi ETH, then xi · (1 − ∆X ′L/∆XL) ETH is returned to

the buyer i due to cancellation. The rest of the order is processed normally and the buyer i

receives (1− γ) · (∆X ′L/∆XL) · xi/[(1 + t)P0] ABC at the price of (1 + t)P0.

If P− is higher than (1 + t)P0, all the buy limit orders should be canceled. All of the

remaining orders either (i) benefit from a higher price (for all the sell orders) or (ii) adapt

to a higher price (for buy market orders). Hence, the exchange box is usually cleared at the

price of P−, after cancelling all buy limit orders.

However, as a precaution, we also cancel some market orders when the price change is too

abrupt. Specifically, if P− is larger than (1 + T )P0, we cancel market orders until the price

reaches (1+T )P0. The volume of buy market orders to be processed, ∆X ′M ∈ [0,∆XM ], can

19



be derived from the following equation:

(1 + T )P0 =
X + ∆X ′M

Y + ∆YL + ∆YM
,

or equivalently:

∆X ′M = (1 + T )P0(Y + ∆YL + ∆YM)−X.

In this case, all the sellers trade at the price of (1 + T )P0. All the buy limit orders

are canceled, and (1 − ∆X ′M/∆XM) percent of the buy market orders is also canceled.

However, ∆X ′M/∆XM percent of the buy market orders is processed at the price of (1 +

T )P0. Consequently, if the buyer i places a buy market order of volume xi ETH, then

xi(1−∆X ′M/∆XM) ETH will be returned due to cancellation, and (1− γ) · (∆X ′M/∆XM) ·

xi/[(1 + T )P0] ABC will also be returned as part of the order that has been processed.

The similar logic applies to the case where P ∗ < P0 — we ration some sell orders to

increase the price. The entire mechanism for price determination will be illustrated with a

flowchart in the next subsection.

3.6 Summary of the Clearing Procedure

Input Assume that the liquidity provider currently has X ETH and Y ABC in the pool.

Let IL, IM , JL, and JM be the set of users who made buy limit orders, buy market orders,

sell limit orders, and sell market orders, respectively. For i ∈ IL ∪ IM , xi ∈ R+ denotes the

volume of the buyer i’s order. For j ∈ JL ∪ JM , yj ∈ R+ denotes the volume of the seller j’s

order.

Step 1: Aggregation The marketplace initially calculates the commission rate γ following

the protocol.5 Then, the marketplace subtracts commissions for the liquidity provider and
5For some trading assets, we can use a fixed value for γ. However, when LBT is included in a trading

pair, we should adjust γ dynamically while taking into account the market volatility. See Section 4.

20



aggregates the orders separately as follows:

∆XL ← (1− γ)
∑
i∈IL

xi, ∆XM ← (1− γ)
∑
i∈IM

xi,

∆YL ← (1− γ)
∑
i∈JL

yj, ∆YM ← (1− γ)
∑
i∈JM

yj.

Step 2: Threshold Prices The marketplace calculates the following threshold prices:

P0 ←
X

Y
,

P+ ← X + ∆XL + ∆XM

Y + ∆YM
,

P ∗ ← X + ∆XL + ∆XM

Y + ∆YL + ∆YM
,

P− ← X + ∆XM

Y + ∆YL + ∆YM
.

Step 3: Rationing and Price Adjustment The marketplace determines the clearing

price P and the rationed trade volumes (∆X̂L, ∆X̂M , ∆ŶL, and ∆ŶM). We will then have

the following seven scenarios for rationing and price adjustment:

Case 1: P0 ≥ (1+T )P+. No buy order is rationed: ∆X̂L ← ∆XL and ∆X̂M ← ∆XM .

All the sell limit orders are rationed: ∆ŶL ← 0. The sell market orders are also partially

rationed:

∆ŶM ← ∆Y ′M =
1 + T

P0

(X + ∆XL + ∆XM)− Y.

The clearing price is set to the lower limit: P ← (1 + T )−1P0.

Case 2: (1 + T )P+ > P0 ≥ (1 + t)P+. No buy order is rationed: ∆X̂L ← ∆XL and

∆X̂M ← ∆XM . Sell market orders are not rationed either: ∆ŶM ← ∆YM . However, all the

sell limit orders are rationed: ∆ŶL ← 0. The clearing price is P ← P+.

21



Figure 3: Rationing and price adjustment for different price levels, with P0 used as the
benchmark price.

Case 3: (1 + t)P+ > P0 ≥ (1 + t)P ∗. No buy order is rationed: ∆X̂L ← ∆XL and

∆X̂M ← ∆XM . Sell market orders are not rationed either: ∆ŶM ← ∆YM . The sell limit

orders are partially rationed:

∆ŶM ← ∆Y ′M =
1 + t

P0

(X + ∆XL + ∆XM)− Y −∆YM .

The clearing price is P ← (1 + t)−1P0.

Case 4: (1 + t)P ∗ > P0 ≥ (1 + t)−1P ∗. No order is rationed at all: ∆X̂L ← ∆XL,

∆X̂M ← ∆XM , ∆ŶL ← ∆YL and ∆ŶM ← ∆YM . The clearing price is P ← P ∗.

Case 5: (1 + t)−1P ∗ > P0 ≥ (1 + t)−1P−. No sell order is rationed: ∆ŶL ← ∆YL and

∆ŶM ← ∆YM . Buy market orders are not rationed either: ∆X̂M ← ∆XM . The buy limit

22



orders are partially rationed:

∆X̂L ← ∆X ′L = (1 + t)P0(Y + ∆YL + ∆YM)−X −∆XM .

The clearing price is P ← (1 + t)P0.

Case 6: (1 + t)−1P− > P0 ≥ (1 + T )−1P−. No sell order is rationed: ∆ŶL ← ∆YL and

∆ŶM ← ∆YM . Buy market orders are not rationed either: ∆X̂M ← ∆XM . However, all the

buy limit orders are rationed: ∆X̂L ← 0. The clearing price is P ← P−.

Case 7: (1 +T )−1P− > P0. No sell order is rationed: ∆ŶL ← ∆YL and ∆ŶM ← ∆YM .

All the buy limit orders are rationed: ∆X̂L ← 0. The buy market orders are also partially

rationed:

∆X̂M ← ∆X ′M = (1 + T )P0(Y + ∆YL + ∆YM)−X.

The clearing price is set to the upper limit: P ← (1 + T )P0.

Step 4: Clearing Individual Orders Based on the prices and volumes calculated so far,

the marketplace determines how much is returned to whom.

Buy Limit Orders Each buyer i ∈ IL, who made a limit order, receives (1−∆X̂L/∆XL)·

xi ETH (returned due to cancellation) and (1− γ) · (∆X̂L/∆XL) · xi/P ABC.

Buy Market Orders Each buyer i ∈ IM , who made a market order, receives (1 −

∆X̂M/∆XM) · xi ETH (returned due to cancellation) and (1 − γ) · (∆X̂M/∆XM) · xi/P

ABC.

Sell Limit Orders Each seller j ∈ JL, who made a limit order, receives (1 − γ) ·

(∆ŶL/∆YL) · yj · P ETH and (1−∆ŶL/∆YL) · yj ABC (returned due to cancellation).

23



Sell Market Orders Each seller j ∈ JM , who made a market order, receives (1− γ) ·

(∆ŶM/∆YM) · yj · P ETH and (1−∆ŶM/∆YM) · yj ABC (returned due to cancellation).

Step 5: Updating the pool volume After all the trades are executed, the liquidity

provider will be holding the following amounts of ETH and ABC in the pool:

X + (1 + γ)
(

∆X̂L + ∆X̂M

)
− P ·

(
∆ŶL + ∆ŶM

)
ETH,

Y + (1 + γ)
(

∆ŶL + ∆ŶM

)
− P−1 ·

(
∆X̂L + ∆X̂M

)
ABC.

The marketplace sets those values as the values of X and Y for the next round, respectively,

and completes the clearance of the current exchange box.

3.7 Closing on the Maturity Date

Being a call option, an LBT has a maturity date. Hence, the marketplace should close on

the maturity date.6 On the maturity date, the marketplace is closed automatically, and no

trade can be conducted after the market closure. The protocol automatically returns the

ETH and ABC tokens in the pool to the liquidity provider and completes its role.

4 Concerns Specific to iDOL/LBT Tradings

4.1 Time Decay

One could argue that the Constant Product Market Maker model is not suitable for an asset

that has a maturity date and whose value systematically changes over time. Indeed, the

value of the call option (i.e. LBT) decreases as its maturity date nears. Hence, the users of

Lien FairSwap can extract profits from the liquidity provider.
6This is the most fundamental reason why we need a new, customized DEX platform specifically designed

for LBTs. Most of the existing DEX platforms, including Uniswap, cannot support assets with maturity
dates.

24



We do not consider this problem to be significant. In the Constant Product Market

Maker model, the liquidity provider supports the trading pairs for assets that do not have

a maturity date in addition to those assets that do have a maturity date; we can expect

the liquidity provider to remain profitable as long as the commission rate for each of the

supported assets is set to an appropriate level.

4.2 Commission Rate Adjustment

The value of an option contract offered by a liquidity provider to its users is influenced by the

price volatility of the underlying asset. If its volatility is high, there is an increasing chance

of mispricing by the liquidity provider, creating an opportunity for large arbitrage gains. As

a result, the liquidity provider can be exposed to huge losses when there is excessive volatility

in the underlying asset.

The LBT trading on Lien FairSwap could be susceptible to this problem. Suppose that

a liquidity provider is opening a marketplace for trading LBT and iDOL (whose value is

pegged to USD). Here, the value of the call option (LBT) can change in a non-linear fashion

against the value of the underlying asset (Ether). As such, even when the price volatility of

ETH (the volatility of the ETH/USD exchange rate) stays fairly constant, the price of LBT

can fluctuate more than the price of the underlying asset (ETH). This means that LBT may

see huge volatility when the ETH price is in a certain range, and this can be detrimental to

the liquidity provider.

To ensure the profit for the liquidity provider, we dynamically adjust the commission

for every exchange box, using the price volatility of LBT as a parameter upon which to

determine the values of option contracts provided by the liquidity provider.

4.3 The Option Value Provided by the Liquidity Provider

We first demonstrate how the value of an option contract provided by the liquidity provider

is designed to change (approximately) linearly. Although this analysis also applies to other

25



assets in general, this is particularly important for trading pairs involving LBT given its

volatile nature.

For every exchange box, the liquidity provider provides a call option and a put option

to the users, allowing them to have the right to buy and sell an LBT with iDOL once the

next exchange box is closed, typically several minutes later. While the precise “strike price”

of an option depends on the number of orders involved, the users can generally trade at a

price near the benchmark price, P0 = X/Y USD/LBT. Note that, although the “base asset”

for this marketplace is iDOL (rather than USD), the exchange rate will be maintained at a

constant value against USD as iDOL is a stable coin pegged to USD.

For simplicity, assume that the pricing of the previous exchange box was perfect in the

sense that P0 coincides with the global exchange rate; this assumption would be (approxi-

mately) true as long as arbitragers are actively trading on Lien FairSwap. In this case, the

options supplied by the liquidity provider are considered to be “at-the-money options” —

both the current price and strike price are P0.

Now, let V be the value of the right to buy an LBT at the price of P0 in the next exchange

box. It is well-known that the value of an at-the-money option can be evaluated with a simple

formula (see Brenner and Subrahmanyan 1988). Using this simple formula coupled with the

Black-Scholes formula (Black and Scholes 1973), the value of our at-the-money option can

be calculated as follows:

V = P0

{
N

(
−r
√
t+

1

2
σC
√
t

)
− e−rtN

(
−r
√
t− 1

2
σC
√
t

)}
, (2)

where t is the “time of expiration” (i.e. the time of closing the next exchange box), r is the

risk-free interest rate, σC is the volatility of the USD/LBT exchange rate, and N(·) is the

cumulative distribution of the standard normal distribution.

26



To proceed, we first conduct the following approximations:

N

(
−r
√
t+

1

2
σC
√
t

)
≈ N

(
1

2
σC
√
t

)
,

e−rtN

(
−r
√
t− 1

2
σC
√
t

)
≈ N

(
−1

2
σC
√
t

)
.

The way we derive these approximate values is as follows. First, we can see that the risk-free

rate is negligibly small compared with the price volatility of a cryptoasset. Hence, σC/2

is much larger than r, allowing us to ignore r here. Second, since the expiration time t is

extremely short, we can say that e−rt ≈ 1.

Given these approximations, (2) simplifies to:

V ≈ P0

{
N

(
1

2
σC
√
t

)
−N

(
−1

2
σC
√
t

)}

Since t is small, 1/2 ·σC
√
t and −1/2 ·σC

√
t are close to zero. Then, using Taylor’s formula,

we obtain:

V ≈ P0N
′(0)σC

√
t, (3)

where N ′ is the density function of the standard normal distribution.

The formula (3) implies that the value of a call option supplied by the liquidity provider

is proportional to the volatility of the USD/LBT exchange rate, σC .

4.4 How to Calculate LBT’s Price Volatility

In this subsection, we explain how we calculate the volatility of the USD/LBT exchange

rate. Since there is currently no price oracle for the USD/LBT exchange rate, we should

compute it from the historical data for the USD/ETH exchange rate.

Let S(t) be the USD/ETH exchange rate in time t. We assume that S(t) follows

dS(t) = µS(t)dt+ σS(t)dW (t),

27



where µ is the drift rate of the USD/ETH exchange rate, σ is the volatility of the USD/ETH

exchange rate, and W (t) is a Wiener process. Now, let C(t, S(t)) be the value of LBT at

time t. The LBT endows the right to buy 1 ETH at the price of K USD at time T . Then,

C(t, S(t)) follows:

dC(t, S(t)) =
∂C

∂t
(t, S(t))dt+

∂C

∂P
(t, S(t))dS(t) +

1

2

∂2C

∂P 2
(t, S(t))(dS(t))2

=

(
∂C

∂t
(t, S(t)) +

∂C

∂P
(t, S(t))µS(t) +

1

2

∂2C

∂P 2
(t, S(t))σ2S(t)2

)
dt

+
∂C

∂P
(t, S(t))

S(t)

C(t, S(t))
σ · C(t, S(t))dW (t).

Accordingly, the volatility of LBT is given by:

σC =
∂C

∂P
(t, S(t))

S(t)

C(t, S(t))
σ.

Since LBT is a call option, its price, C(t, S(t)), is given by the Black-Scholes formula. It is

well-known that its partial derivative for the base asset price (also known as the delta for a

call option) is given by:

∂C

∂P
(t, S(t)) = N

(
1

σ
√
T − t

[
log

(
S(t)

K

)
+

(
r +

σ2

2

)
(T − t)

])
.

Lien FairSwap is aware of the maturity date (T ), strike price (K), and the current LBT

price (C(t, S(t))) by design. The risk-free interest rate (r), the current USD/ETH exchange

rate (S(t)), and its volatility (σ) can be computed from the data provided by a reliable

oracle such as ChainLink. Using those data points, we calculate the volatility of LBT, σC ,

and adjust the commission rate linearly based on the changes in σC .

28



References

Angeris, G., H.-T. Kao, R. Chiang, C. Noyes, and T. Chitra (2019): “An analysis

of Uniswap markets,” arXiv preprint arXiv:1911.03380.

Black, F. and M. Scholes (1973): “The pricing of options and corporate liabilities,”

Journal of political economy, 81, 637–654.

Brenner, M. and M. G. Subrahmanyan (1988): “A simple formula to compute the

implied standard deviation,” Financial Analysts Journal, 44, 80–83.

Budish, E., P. Cramton, and J. Shim (2015): “The high-frequency trading arms race:

Frequent batch auctions as a market design response,” The Quarterly Journal of Eco-

nomics, 130, 1547–1621.

Daian, P., S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,

and A. Juels (2019): “Flash boys 2.0: Frontrunning, transaction reordering, and con-

sensus instability in decentralized exchanges,” arXiv preprint arXiv:1904.05234.

Lewis, M. (2014): Flash Boys: A Wall Street Revolt, W. W. Norton & Company.

Lien Protocol (2020): “iDOL white paper,” https://lien.finance/pdf/iDOLWP_v1.

pdf.

Lu, A. (2017): “Building a decentralized exchange in Ethereum,” https://blog.gnosis.

pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e, Accessed on

April 16, 2020.

29

https://lien.finance/pdf/iDOLWP_v1.pdf
https://lien.finance/pdf/iDOLWP_v1.pdf
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e

	Introduction
	Speculators: Essential Part of the iDOL Ecosystem
	LBT as a Leveraged Token

	Preliminary: Constant Product Market
	How it works
	Front-Running
	Price Slippage Limit

	Lien FairSwap
	Frequent Batch Auction + Constant Product Market Maker Model
	Exchange Box
	Clearing Price
	Commissions and Aggregation Rule
	Price Slippage Limit and Rationing
	Summary of the Clearing Procedure
	Closing on the Maturity Date

	Concerns Specific to iDOL/LBT Tradings
	Time Decay
	Commission Rate Adjustment
	The Option Value Provided by the Liquidity Provider
	How to Calculate LBT's Price Volatility


