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 Abstract 

Decentralized Cloud storage represents a fundamental shift in the e ciency and 

eco- nomics of large-scale storage. Eliminating central control allows users to store and 

share data without reliance on a third-party storage provider. Decentralization 

mitigates the risk of data failures and outages while simultaneously increasing the 

security and privacy of object storage. It also allows market forces to optimize for less 

expensive storage at a greater rate than any single provider could a"ord. Although 

there are many ways to build such a system, there are some specific responsibilities any 

given implementation should address. Based on our experience with petabyte-scale 

storage systems, we introduce a modular framework for considering these 

responsibilities and for building our distributed storage network. Additionally, we 

describe an initial concrete implementation for the entire framework. 
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1. Introduction 

 
The Internet is a massive decentralized and distributed network consisting of billions of 

devices which are not controlled by a single group or entity. Much of the data currently 

available through the Internet is quite centralized and is stored with a handful of tech- 

nology companies that have the experience and capital to build massive data centers 

capable of handling this vast amount of information. A few of the challenges faced by 

data centers are: data breaches, periods of unavailability on a grand scale, storage costs, 

and expanding and upgrading quickly enough to meet user demand for faster data and 

larger formats. 

Decentralized storage has emerged as an answer to the challenge of providing a per- 

formant, secure, private, and economical Cloud storage solution. Decentralized storage 

is better positioned to achieve these outcomes as the architecture has a more natural 

align- ment to the decentralized architecture of the Internet as a whole, as opposed to 

massive centralized data centers. 

News coverage of data breaches over the past few years has shown us that the fre- 

quency of such breaches has been increasing by as much as a factor of 10 between 2005 

and 2017 [1]. Decentralized storage’s process of protecting data makes data breaches 

more di cult than current methods used by data centers while, at the same time, cost- 

ing less than current storage methods. 

This model can address the rapidly expanding amount of data for which current solu- 

tions struggle. With an anticipated 44 zettabytes of data expected to exist by 2020 and 

a market that will grow to $92 billion USD in the same time frame [2], we have identified 

several key market segments that decentralized Cloud storage has the potential to 

ad- dress. As decentralized Cloud storage capabilities evolve, it will be able to address a 

much wider range of use cases from basic object storage to content delivery networks 

(CDN). 

Decentralized Cloud storage is rapidly advancing in maturity, but its evolution is subject 

to a specific set of design constraints which define the overall requirements and imple- 

mentation of the network. When designing a distributed storage system, there are many 

parameters to be optimized such as speed, capacity, trustlessness, Byzantine fault toler- 

ance, cost, bandwidth, and latency. 

We propose a framework that scales horizontally to exabytes of data storage across 

the globe. Our system, the Daatty Cloud Coin Network, is a robust object store that 

encrypts, shards, and distributes data to nodes around the world for storage. Data is 

stored and served in a manner purposefully designed to prevent breaches. In order to 

accomplish this task, we’ve designed our system to be modular, consisting of 

independent components with task- specific jobs. We’ve integrated these 

components to implement a decentralized object storage system that is not only 

secure, performant, and reliable but also significantly more economical than either on-

premise or traditional, centralized Cloud storage. 
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We have organized the rest of this paper into six additional chapters. Chapter 2 dis- 

cusses the design space in which Daatty Cloud Coin operates and the specific 

constraints on which our optimization e"orts are based. Chapter 3 covers our 

framework. Chapter 4 proposes a simple concrete implementation of the framework, 

while chapter 5 explains what hap- pens during each operation in the network. Chapter 

6 covers future work. Finally, chapter 7 covers selected calculations. 



 

 
2. Daatty design constraints 

 
Before designing a system, it’s important to first define its requirements. There are many 

di"erent ways to design a decentralized storage system. However, with the addition of a 

few requirements, the potential design space shrinks significantly. Our design constraints 

are heavily influenced by our product and market fit goals. By carefully considering each 

requirement, we ensure the framework we choose is as universal as possible, given the 

constraints. 

 
 

 Security and privacy 

Any object storage platform must ensure both the privacy and security of data stored 

regardless of whether it is centralized or decentralized. Decentralized storage platforms 

must mitigate an additional layer of complexity and risk associated with the storage of 

data on inherently untrusted nodes. Because decentralized storage platforms cannot take 

many of the same shortcuts data center based approaches can (e.g. firewalls, DMZs, etc.), 

decentralized storage must be designed from the ground up to support not only end-to- 

end encryption but also enhanced security and privacy at all levels of the system. 

Certain categories of data are also subject to specific regulatory compliance. For exam- 

ple, the United States legislation for the Health Insurance Portability and Accountability 

Act (HIPAA) has specific requirements for data center compatibility. European countries 

have to consider the General Data Protection Regulation (GDPR) regarding how individ- 

ual information must be protected and secured. Many customers outside of the United 

States may feel they have significant geopolitical reasons to consider storing data in a way 

that limits the ability for US-based entities to impact their privacy [3]. There are many 

other regulations in other sectors regarding user’s data privacy. 

Customers should be able to evaluate that our software is implemented correctly, is 

resistant to attack vectors (known or unknown), is secure, and otherwise fulfills all of the 

customers’ requirements. Open source software provides the level of transparency and 

assurance needed to prove that the behaviors of the system are as advertised. 

 
 

 Decentralization 

Informally, a decentralized application is a service that has no single operator. Further- 

more, no single entity should be solely responsible for the cost associated with running 

the service or be able to cause a service interruption for other users. 

One of the main motivations for preferring decentralization is to drive down infrastruc- 

ture costs for maintenance, utilities, and bandwidth. We believe that there are significant 

underutilized resources at the edge of the network for many smaller operators. In our ex- 
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perience building decentralized storage networks, we have found a long tail of resources 

that are presently unused or underused that could provide a"ordable and geographi- 

cally distributed Cloud storage. Conceivably, some small operator might have access to 

less-expensive electricity than standard data centers or another small operator could have 

access to less-expensive cooling. Many of these small operator environments are not sub- 

stantial enough to run an entire datacenter-like storage system. For example, perhaps 

a small business or home Network Attached Storage (NAS) operator has enough excess 

electricity to run ten hard drives but not more. We have found that in aggregate, enough 

small operator environments exist such that their combination over the internet consti- 

tutes significant opportunity and advantage for less-expensive and faster storage. 

Our decentralization goals for fundamental infrastructure, such as storage, are also 

driven by our desire to provide a viable alternative to the few major centralized storage 

entities who dominate the market at present. We believe that there exists inherent risk 

in trusting a single entity, company, or organization with a significant percentage of the 

world’s data. In fact, we believe that there is an implicit cost associated with the risk of 

trusting any third party with custodianship of personal data. Some possible costly out- 

comes include changes to the company’s roadmap that could result in the product be- 

coming less useful, changes to the company’s position on data collection that could cause 

it to sell customer metadata to advertisers, or even the company could go out of business 

or otherwise fail to keep customer data safe. By creating an equivalent or better decentral- 

ized system, many users concerned about single-entity risk will have a viable alternative. 

With decentralized architecture, Daatty Cloud Coin could cease operating and the data 

would continue to be available. 

We have decided to adopt a decentralized architecture because, despite the trade- 

o"s, we believe decentralization better addresses the needs of Cloud storage and resolves 

many core limitations, risks, and cost factors that result from centralization. Within this 

context, decentralization results in a globally distributed network that can serve a wide 

range of storage use cases from archival to CDN. However, centralized storage systems 

require di"erent architectures, implementations, and infrastructure to address each of 

those same use cases. 

 
 

 Marketplace and economics 

Public Cloud computing, and public Cloud storage in particular, has proven to be an 

at- tractive business model for the large centralized Cloud providers. Cloud 

computing is estimated to be a $186.4 billion dollar market in 2018, and is expected 

to reach $302.5 billion by 2021 [4]. 

The public Cloud storage model has provided a compelling economic model to 

end users. Not only does it enable end users to scale on demand but also allows 

them to avoid the significant fixed costs of facilities, power, and data center 

personnel. Public 
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Cloud storage has generally proven to be an economical, durable, and performant option 

for many end users when compared to on-premise solutions. 

However, the public Cloud storage model has, by its nature, led to a high degree 

of concentration. Fixed costs are born by the network operators, who invest billions of 

dollars in building out a network of data centers and then enjoy significant economies 

of scale. The combination of large upfront costs and economies of scale means that 

there is an extremely limited number of viable suppliers of public Cloud storage 

(arguably, fewer than five major operators worldwide). These few suppliers are also the 

primary beneficiaries of the economic return. 

We believe that decentralized storage can provide a viable alternative to centralized 

Cloud. However, to encourage partners or customers to bring data to the network, 

the price charged for storage and bandwidth—combined with the other benefits of 

decen- tralized storage—must be more compelling and economically beneficial than 

competing storage solutions. In our design of Daatty Cloud Coin, we seek to create an 

economically advantageous situation for four di"erent groups: 

End users - We must provide the same economically compelling characteristics of public 

Cloud storage with no upfront costs and scale on demand. In addition, end 

users must experience meaningfully better value for given levels of capacity, 

durability, security, and performance. 

Storage node operators - It must be economically attractive for storage node operators 

to help build out the network. They must be paid fairly, transparently, and be able 

to make a reasonable profit relative to any marginal costs they incur. It should be 

economically advantageous to be a storage node operator not only by utilizing un- 

derused capacity but also by creating new capacity, so that we can grow the network 

beyond the capacity that currently exists. Since node availability and reliability has 

a large impact on network availability, cost, and durability, it is required that stor- 

age node operators have su cient incentive to maintain reliable and continuous 

connections to the network. 

Demand providers - It must be economically attractive for developers and businesses to 

drive customers and data onto the Daatty Cloud Coin network. We must design 

the system to fairly and transparently deliver margin to partners. We believe that 

there is a unique opportunity to provide open-source software (OSS) companies 

and projects, which drive over two-thirds of the public Cloud workloads today 

without receiving direct revenue, a source of sustainable revenue. 

Network operator - To sustain continued investment in code, functionality, network 

maintenance, and demand generation, the network operator, currently Daatty 

Cloud Coin Labs, Inc., must be able to retain a reasonable profit. The operator 

must maintain this profit while not only charging end users less than the public 

Cloud providers but also margin sharing with storage node operators and 

demand providers. 

Additionally, the network must be able to account for ensuring e cient, timely billing 

and payment processes as well as regulatory compliance for tax and other reporting. To 

be as globally versatile as possible with payments, our network must be robust to accom- 
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modate several types of transactions (such as cryptocurrency, bank payments, and other 

forms of barter). 

Lastly, the Daatty Cloud Coin roadmap must be aligned with the economic drivers 

of the network. New features and changes to the concrete implementations of 

framework components must be driven by applicability to specific object storage use 

cases and the relationship between features and performance to the price of storage and 

bandwidth relative to those use cases. 

 

 Amazon S3 compatibility 

At the time of this paper’s publication, the most widely deployed public Cloud is 

Amazon Web Services [5]. Amazon Web Services not only is the largest Cloud services 

ecosystem but also has the benefit of first mover advantage. Amazon’s first Cloud 

services product was Amazon Simple Storage Service, or Amazon S3 for short. Public 

numbers are hard to come by but Amazon S3 is likely the most widely deployed 

Cloud storage protocol in existence. Most Cloud storage products provide some form 

of compatibility with the Amazon S3 application program interface (API) 

architecture. 

Our objective is to aggressively compete in the wider Cloud storage industry and bring 

decentralized Cloud storage into the mainstream. Until a decentralized Cloud 

storage protocol becomes widely adopted, Amazon S3 compatibility creates a 

graceful transi- tion path from centralized providers by alleviating many switching costs 

for our users. To achieve this, the Daatty Cloud Coin implementation allows 

applications previously built against Ama- zon S3 to work with Daatty Cloud Coin with 

minimal friction or changes. S3 compatibility adds aggres- sive requirements for 

feature set, performance, and durability. At a bare minimum, this requires the 

methods described in Figure 2.1 to be implemented. 

 

1 // Bucket operations 

2 Create Bucket ( bucket Name ) 

3 Delete Bucket ( bucket Name ) 

4 List Buckets () 

5 

6 // Object operations 

7 Get Object ( bucketName , objectPath , offset , length ) 

8 Put Object ( bucketName , objectPath , data , metadata ) 

9 Delete Object ( bucketName , object Path ) 

10 List Objects ( bucketName , prefix , startKey , limit , delimiter ) 

 
Figure 2.1: Minimum S3 API 

 

 
 Durability, device failure, and churn 

A storage platform is useless unless it also functions as a retrieval platform. For any storage 

platform to be valuable, it must be careful not to lose the data it was given, even in the 
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presence of a variety of possible failures within the system. Our system must store data 

with high durability and have negligible risk of data loss. 

For all devices, component failure is a guarantee. All hard drives fail after enough 

wear [6] and servers providing network access to these hard drives will also eventually 

fail. Network links may die, power failures could cause havoc sporadically, and storage 

media become unreliable over time. Data must be stored with enough redundancy to 

recover from individual component failures. Perhaps more importantly, no data can be 

left in a single location indefinitely. In such an environment, redundancy, data mainte- 

nance, repair, and replacement of lost redundancy must be considered inevitable, and 

the system must account for these issues. 

Furthermore, decentralized systems are susceptible to high churn rates where partic- 

ipants join the network and then leave for various reasons, well before their hardware 

has actually failed. For instance, Rhea et al. found that in many real world peer-to-peer 

systems, the median time a participant lasts in the network ranges from hours to mere 

minutes [7]. Maymounkov et al. found that the probability of a node staying connected to 

a decentralized network for an additional hour is an increasing function of uptime (Fig- 

ure 2.2 [8]). In other words, nodes that have been online for a long time are less likely to 

contribute to overall node churn. 

Churn could be caused by any number of factors. Storage nodes may go o½ine due to 

hardware or software failure, intermittent internet connectivity, power loss, complete disk 

failure, or software shutdown or removal. The more network churn that exists, the more 

redundancy is required to make up for the greater rate of node loss. The more redundancy 

that is required, the more bandwidth is needed for correct operation of the system. In 

fact, there is a tight relationship between network churn, additional redundancy, and 

bandwidth availability [9]. To keep background bandwidth usage and redundancy low, 

our network must have low network churn and a strong incentive to favor long-lived, stable 

nodes. 

See section 7.3.3 and Blake et al. [9] for a discussion of how repair bandwidth varies as 

a function of node churn. 

 
 

 Latency 

Decentralized storage systems can potentially capitalize on massive opportunities for par- 

allelism. Some of these opportunities include increased transfer rates, processing capabil- 

ities, and overall throughput even when individual network links are slow. However, paral- 

lelism cannot, by itself, improve latency. If an individual network link is utilized as part of 

an operation, its latency will be the lower bound for the overall operation. Therefore, any 

distributed system intended for high performance applications must continuously and 

aggressively optimize for low latency not only on an individual process scale but also for 

the system’s entire architecture. 
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Figure 2.2: Probability of remaining online an additional hour as a function of uptime. 

The x axis represents minutes. The y axis shows the fraction of nodes that stayed online 

at least x minutes that also stayed online at least x + 60 minutes. Source: Maymounkov 

et al. [8] 

 

 Bandwidth 

Global bandwidth availability is increasing year after year. Unfortunately, access to high- 

bandwidth internet connections is unevenly distributed across the world. While some 

users can easily access symmetric, high-speed, unlimited bandwidth connections, others 

have significant di culty obtaining the same type of access. 

In the United States and other countries, the method in which many residential in- 

ternet service providers (ISPs) operate presents two specific challenges for designers of a 

decentralized network protocol. The first challenge is the asymmetric internet connec- 

tions o"ered by many ISPs. Customers subscribe to internet service based on an adver- 

tised download speed, but the upload speed is potentially an order of magnitude or two 

slower. The second challenge is that bandwidth is sometimes “capped” by the ISP at a 

fixed amount of allowed tra c per month. For example, in many US markets, the ISP 

Comcast imposes a one terabyte per month bandwidth cap with sti" fines for customers 

who go over this limit [10]. An internet connection with a cap of 1 TB/month cannot av- 

erage more than 385 KB/s over the month without exceeding the monthly bandwidth 

allowance, even if the ISP advertises speeds of 10 MB/s or higher. Such caps impose sig- 

nificant limitations on the bandwidth available to the network at any given moment. 

With device failure and churn guaranteed, any decentralized system will have a corre- 

sponding amount of repair tra c. As a result, it is important to account for the bandwidth 

required not only for data storage and retrieval but also for data maintenance and re- 

pair [9]. Designing a storage system that is careless with bandwidth usage would not only 

give undue preference to storage node operators with access to unlimited high-speed 

bandwidth but also centralize the system to some degree. In order to keep the storage 

system as decentralized as possible and working in as many environments as possible, 

bandwidth usage must be aggressively minimized. 
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Please see section 7.1.1 for a discussion on how bandwidth availability and repair tra c 

limit usable space. 

 

 Object size 

We can broadly classify large storage systems into two groups by average object size. 

To di"erentiate between the two groups, we classify a “large” file as a few megabytes 

or greater in size. A database is the preferred solution for storing many small pieces of 

information, whereas an object store or file system is ideal for storing many large files. 

The initial product o"ering by Daatty Cloud Coin Labs is designed to function 

primarily as a decen- tralized object store for larger files. While future improvements 

may enable database-like use cases, object storage is the predominant initial use case 

described in this paper. We made protocol design decisions with the assumption that 

the vast majority of stored ob- jects will be 4MB or larger. While smaller files are 

supported, they may simply be more costly to store. 

It is worth noting that this will not negatively impact use cases that require reading 

lots of files smaller than a megabyte. Users can address this with a packing strategy by 

aggregating and storing many small files as one large file. The protocol supports seek- 

ing and streaming, which will allow users to download small files without requiring full 

retrieval of the aggregated object. 

 

 Byzantine fault tolerance 

Unlike centralized solutions like Amazon S3, Daatty Cloud Coin operates in an untrusted 

environment where individual storage providers are not necessarily assumed to be 

trustworthy. Daatty Cloud Coin op- erates over the public internet, allowing anyone to 

sign up to become a storage provider. 

We adopt the Byzantine, Altruistic, Rational (BAR) model [11] to discuss participants in 

the network. 

• Byzantine nodes may deviate arbitrarily from the suggested protocol for any reason. 

Some examples include nodes that are broken or nodes that are actively trying to 

sabotage the protocol. In general, a Byzantine node is a bad actor, or one that 

optimizes for a utility function that is independent of the one given for the suggested 

protocol. 

• Inevitable hardware failures aside, Altruistic nodes are good actors and participate 

in a proposed protocol even if the rational choice is to deviate. 

• Rational nodes are neutral actors and participate or deviate only when it is in their 

net best interest. 

Some distributed storage systems (e.g. datacenter-based Cloud object storage 

systems) operate in an environment where all nodes are considered altruistic. For 

example, absent 
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hardware failure or security breaches, Amazon’s storage nodes will not do anything be- 

sides what they were explicitly programmed to do, because Amazon owns and runs all of 

them. 

In contrast, Daatty Cloud Coin operates in an environment where every node is 

managed by its own independent operator. In this environment, we can expect that 

a majority of storage nodes are rational and a minority are Byzantine. Daatty Cloud Coin 

assumes no altruistic nodes. 

We must include incentives that encourage the network to ensure that the rational 

nodes on the network (the majority of operators) behave as similarly as possible to the 

expected behavior of altruistic nodes. Likewise, the e"ects of Byzantine behavior must be 

minimized or eliminated. 

Note that creating a system that is robust in the face of Byzantine behavior does not 

require a Byzantine fault tolerant consensus protocol—we avoid Byzantine consensus. See 

sections 4.9, 6.2, and appendix A for more details. 

 
 

 Coordination avoidance 

A growing body of distributed database research shows that systems that avoid coordina- 

tion wherever possible have far better throughput than systems where subcomponents 

are forced to coordinate to achieve correctness [12–19]. We use Bailis et al.’s informal def- 

inition that coordination is the requirement that concurrently executing operations syn- 

chronously communicate or otherwise stall in order to complete [16]. This observation 

happens at all scales and applies not only to distributed networks but also to concurrent 

threads of execution coordinating within the same computer. As soon as coordination 

is needed, actors in the system will need to wait for other actors, and waiting—due to 

coordination issues—can have a significant cost. 

While many types of operations in a network may require coordination (e.g., opera- 

tions that require linearizability1 [15, 20, 21]), choosing strategies that avoid coordination 

(such as Highly Available Transactions [15]) can o"er performance gains of two to three 

orders of magnitude over wide area networks. In fact, by carefully avoiding coordination 

as much as possible, the Anna database [17] is able to be 10 times faster than both Cas- 

sandra and Redis in their corresponding environments and 700 to 800 times faster than 

performance-focused in-memory databases such as Masstree or Intel’s TBB [22]. Not all 

coordination can be avoided, but new frameworks (such as Invariant Confluence [16] or 

the CALM principle [18, 19]) allow system architects to understand when coordination is 

required for consistency and correctness. As evidenced by Anna’s performance successes, 

it is most e cient to avoid coordination where possible. 

Systems that minimize coordination are much better at scaling from small to large 

workloads. Adding more resources to a coordination-avoidant system will directly in- 
1 Linearizable operations are atomic operations on a specific object where the order of operations is equivalent 

to the order given original “wall clock” time. 
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crease throughput and performance. However, adding more resources to a coordination- 

dependent system (such as BitCoin [23] or even Raft [24]) will not result in much additional 

throughput or overall performance. 

To get to exabyte scale, minimizing coordination is one of the key components of our 

strategy. Surprisingly, many decentralized storage platforms are working towards archi- 

tectures that require significant amounts of coordination, where most if not all operations 

must be accounted for by a single global ledger. For us to achieve exabyte scale, it is a fun- 

damental requirement to limit hotpath coordination domains to small spheres which are 

entirely controllable by each user. This limits the applicability of blockchain-like solutions 

for our use case. 



 

 

 

 

3. Framework 

 
After having considered our design constraints, this chapter outlines the design of a frame- 

work consisting of only the most fundamental components. The framework describes all 

of the components that must exist to satisfy our constraints. As long as our design con- 

straints remain constant, this framework will, as much as is feasible, describe Daatty 

Cloud Coin both now and ten years from now. While there will be some design freedom 

within the frame- work, this framework will obviate the need for future rearchitectures 

entirely, as indepen- dent components will be able to be replaced without a"ecting 

other components. 

 
 

 Framework overview 

All designs within our framework will do the following things: 

Store data When data is stored with the network, a client encrypts and breaks it up into 

multiple pieces. The pieces are distributed to peers across the network. When this 

occurs, metadata is generated that contains information on where to find the data 

again. 

Retrieve data When data is retrieved from the network, the client will first reference the 

metadata to identify the locations of the previously stored pieces. Then the pieces 

will be retrieved and the original data will be reassembled on the client’s local ma- 

chine. 

Maintain data When the amount of redundancy drops below a certain threshold, the 

necessary data for the missing pieces is regenerated and replaced. 

Pay for usage A unit of value should be sent in exchange for services rendered. 

To improve understandability, we break up the design into a collection of eight inde- 

pendent components and then combine them to form the desired framework. 

The individual components are: 

1. Storage nodes 

2. Peer-to-peer communication and discovery 

3. Redundancy 

4. Metadata 

5. Encryption 

6. Audits and reputation 

7. Data repair 

8. Payments 
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 Storage nodes 

The storage node’s role is to store and return data. Aside from reliably storing data, nodes 

should provide network bandwidth and appropriate responsiveness. Storage nodes are 

selected to store data based on various criteria: ping time, latency, throughput, bandwidth 

caps, su cient disk space, geographic location, uptime, history of responding accurately 

to audits, and so forth. In return for their service, nodes are paid. 

Because storage nodes are selected via changing variables external to the protocol, 

node selection is an explicit, non-deterministic process in our framework. This means that 

we must keep track of which nodes were selected for each upload via a small amount 

of metadata; we can’t select nodes for storing data implicitly or deterministically as in a 

system like Dynamo [25]. As with GFS [26], HDFS [27], or Lustre [28], this decision implies 

the requirement of a metadata storage system to keep track of selected nodes (see section 

3.5). 

 
 

 Peer-to-peer communication and discovery 

All peers on the network communicate via a standarized protocol. The framework requires 

that this protocol: 

• provides peer reachability, even in the face of firewalls and NATs where possible. This 

may require techniques like STUN [29], UPnP [30], NAT-PMP [31], etc. 

• provides authentication as in S/Kademlia [32], where each participant cryptograph- 

ically proves the identity of the peer with whom they are speaking to avoid man-in- 

the-middle attacks. 

• provides complete privacy. In cases such as bandwidth measurement (see section 

4.17), the client and storage node must be able to communicate without any risk of 

eavesdroppers. The protocol should ensure that all communications are private by 

default. 

Additionally, the framework requires a way to look up peer network addresses by a 

unique identifier so that, given a peer’s unique identifier, any other peer can connect to 

it. This responsibility is similar to the internet’s standard domain name system (DNS) [33], 

which is a mapping of an identifier to an ephemeral connection address, but unlike DNS, 

there can be no centralized registration process. To achieve this, a network overlay, such 

as Chord [34], Pastry [35], or Kademlia [8], can be built on top of our chosen peer-to-peer 

communication protocol. See Section 4.6 for implementation details. 

 
 

 Redundancy 

We assume that at any moment, any storage node could go o½ine permanently. Our 

redundancy strategy must store data in a way that provides access to the data with high 
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probability, even though any given number of individual nodes may be in an o½ine state. 

To achieve a specific level of durability (defined as the probability that data remains avail- 

able in the face of failures), many products in this space use simple replication. Unfortu- 

nately, this ties durability to the network expansion factor, which is the storage overhead 

for reliably storing data. This significantly increases the total cost relative to the stored 

data. 

For example, suppose a certain desired level of durability requires a replication strategy 

that makes eight copies of the data. This yields an expansion factor of 8x, or 800%. This 

data then needs to be stored on the network, using bandwidth in the process. Thus, more 

replication results in more bandwidth usage for a fixed amount of data. As discussed in 

the protocol design constraints (section 2.7) and Blake et al. [9], high bandwidth usage 

prevents scaling, so this is an undesirable strategy for ensuring a high degree of file dura- 

bility. 

As an alternative to simple replication, erasure codes provide a much more e cient 

method to achieve redundancy. Erasure codes are well-established in use for both dis- 

tributed and peer-to-peer storage systems [36–42]. Erasure codes are an encoding scheme 

for manipulating data durability without tying it to bandwidth usage, and have been 

found to improve repair tra c significantly over replication [9]. Importantly, they allow 

changes in durability without changes in expansion factor. 

An erasure code is often described by two numbers, k  and n.  If a block of data is 

encoded with a (k, n) erasure code, there are n total generated erasure shares, where 

only any k of them are required to recover the original block of data. If a block of data 

is s bytes, each of the n erasure shares is roughly s/k bytes. Besides the case when k = 1 

(replication), all erasure shares are unique. 

Interestingly, the durability of a (k = 20, n = 40) erasure code is better than a (k = 10, n = 

20) erasure code, even though the expansion factor (2x) is the same for both. This is be- 

cause the risk is spread across more nodes in the (k = 20, n = 40) case. These considerations 

make erasure codes an important part of our general framework. 

To better understand how erasure codes increase durability without increasing expan- 

sion factors, the following table shows various choices of k and n, along with the expansion 

factor and associated durability: 

 
k n Exp. factor P(D | p = 10%) 

2 4 2 99.207366813274616% 

4 8 2 99.858868985411326% 

8 16 2 99.995462406878260% 

16 32 2 99.999994620652776% 

20 40 2 99.999999807694154% 

32 64 2 99.999999999990544% 
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In contrast, replication requires significantly higher expansion factors for the same 

durability. The following table shows durability with a replication scheme: 

 
k n Exp. factor P(D | p = 10%) 

1 1 1 90.483741803595962% 

1 2 2 98.247690369357827% 

1 3 3 99.640050681691051% 

1 10 10 99.999988857452166% 

1 16 16 99.999999998036174% 

 
To see how these tables were calculated, we’ll start with the simplifying assumption 

that p is the monthly node churn rate (that is, the fraction of nodes that will go o½ine in a 

month on average). Mathematically, time-dependent processes are modeled according 

to the Poisson distribution, where it is assumed that λ events are observed in the given unit 

of time. As a result, we model durability as the cumulative distribution function (CDF) of 

the Poisson distribution with mean λ = pn, where we expect λ pieces of the file to be lost 

monthly. To estimate durability, we consider the CDF up to n – k, looking at the probability 

that at most n – k pieces of the file are lost in a month and the file can still be rebuilt. The 

CDF is given by: 

n–k 

P(D) = e–λ λ
 

 

The expansion factor still plays a big role in durability, as seen in the following table:  

 
k n Exp. factor P(D | p = 10%) 

4 6 1.5 97.688471224736705% 

4 12 3 99.999514117129605% 

20 30 1.5 99.970766304935266% 

20 50 2.5 99.999999999999548% 

100 150 1.5 99.999999999973570% 

 
By being able to tweak the durability independently of the expansion factor, erasure 

coding allows very high durability to be achieved with surprisingly low expansion factors. 

Because of how limited bandwidth is as a resource, completely eliminating replication 

as a strategy and using erasure codes only for redundancy causes a drastic decrease in 

bandwidth footprint. 

Erasure coding also results in storage nodes getting paid more. High expansion fac- 

tors dilute the incoming funds per byte across more storage nodes; therefore, low ex- 

pansion factors, such as those provided by erasure coding, allow for a much more direct 

passthrough of income to storage node operators. 

i=0 

i 
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 Erasure codes’ e"ect on streaming 

Erasure codes are used in many streaming contexts such as audio CDs and satellite com- 

munications [38], so it’s important to point out that using erasure coding in general does 

not make our streaming design requirement (required by Amazon S3 compatibility, see 

section 2.4) more challenging. Whatever erasure code is chosen for our framework, as 

with CDs, streaming can be added on top by encoding small portions at a time, instead 

of attempting to encode a file all at once. See section 4.8 for more details. 

 
 Erasure codes’ e"ect on long tails 

Erasure codes enable an enormous performance benefit, which is the ability to avoid 

waiting for “long-tail” response times [43]. A long-tail response occurs in situations where 

a needed server has an unreasonably slow operation time due to a confluence of un- 

predictable factors. Long-tail responses are so-named due to their rare average rate of 

occurrence but highly variable nature, which in a probability density graph looks like a 

“long tail.” In aggregate, long-tail responses are a big issue in distributed system design. 

In MapReduce, long-tail responses are called “stragglers.” MapReduce executes redun- 

dant requests called “backup tasks” to make sure that if specific stragglers take too long, 

the overall operation can still proceed without waiting. If the backup task mechanism is 

disabled in MapReduce, basic operations can take 44% longer to complete, even though 

the backup task mechanism is causing duplicated work [44]. 

By using erasure codes, we are in a position to create MapReduce-like backup tasks for 

storage [39, 40]. For uploads, a file can be encoded to a higher (k, n) ratio than necessary 

for desired durability guarantees. During an upload, after enough pieces have uploaded 

to gain required redundancy, the remaining additional uploads can be canceled. This 

cancellation allows the upload to continue as fast as the fastest nodes in a set, instead of 

waiting for the slowest nodes. 

Downloads are similarly improved. Since more redundancy exists than is needed, 

downloads can be served from the fastest peers, eliminating a wait for temporarily slow 

or o½ine peers. 

The outcome is that every request is satisfiable by the fastest nodes participating in any 

given transaction, without needing to wait for a slower subset. Focusing on operations 

where the result is only dependent on the fastest nodes of a random subpopulation turns 

what could be a potential liability (highly variable performance from individual actors) into 

a great source of strength for a distributed storage network, while still providing great load 

balancing characteristics. 

This ability to over-encode a file greatly assists dynamic load balancing of popular con- 

tent on the network. See section 6.1 for a discussion on how we plan to address load 

balancing very active files. 
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 Metadata 

Figure 3.1: Various outcomes during upload and download 

 

Once we split an object up with erasure codes and select storage nodes on which to 

store the new pieces, we now need to keep track of which storage nodes we selected. We 

allow users to choose storage based on geographic location, performance characteristics, 

available space, and other features. Therefore, instead of implicit node selection such 

as a scheme using consistent hashing like Dynamo [25], we must use an explicit node 

selection scheme such as directory-based lookups [45]. Additionally, to maintain Amazon 

S3 compatibility, the user must be able to choose an arbitrary key, often treated like a path, 

to identify this mapping of data pieces to node. These features imply the necessity of a 

metadata storage system. 

Amazon S3 compatibility once again imposes some tight requirements. We should 

support: hierarchical objects (paths with prefixes), per-object key/value storage, arbitrarily 

large files, arbitrarily large amounts of files, and so forth. Objects should be able to be 

stored and retrieved by arbitrary key; in addition, deterministic iteration over those keys 

will be required to allow for paginated listing. 

Every time an object is added, edited, or removed, one or more entries in this metadata 

storage system will need to be adjusted. As a result, there could be heavy churn in this 

metadata system, and across the entire userbase the metadata itself could end up being 

sizable. 

For example, suppose in a few years the network stores one total exabyte of data, where 

the average object size is 50MB and our erasure code is selected such that n = 40. One 

exabyte of 50MB objects is 20 billion objects. This metadata system will need to keep track 

of which 40 nodes were selected for each object. If each metadata element is roughly 
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40 · 64 + 192 bytes (info for each selected node plus the path and some general overhead), 

there are over 55 terabytes of metadata of which to keep track. 

Fortunately, the metadata can be heavily partitioned by the user. A user storing 100 

terabytes of 50 megabyte objects will only incur a metadata overhead of 5.5 gigabytes. 

It’s worth pointing out that these numbers vary heavily with object size: the larger the 

average object size, the less the metadata overhead. 

An additional framework focus is enabling this component—metadata storage—to be 

interchangeable. Specifically, we expect the platform to incorporate multiple implemen- 

tations of metadata storage that users will be allowed to choose between. This greatly 

assists with our design goal of coordination avoidance between users (see section 2.10). 

Aside from scale requirements, to implement Amazon S3 compatibility, the desired 

API is straightforward and simple: Put (store metadata at a given path), Get (retrieve meta- 

data at a given a path), List (paginated, deterministic listing of existing paths), and Delete 

(remove a path). See Figure 2.1 for more details. 

 
 

 Encryption 

Regardless of storage system, our design constraints require total security and privacy. All 

data or metadata will be encrypted. Data must be encrypted as early as possible in the 

data storage pipeline, ideally before the data ever leaves the source computer. This means 

that an Amazon S3-compatible interface or appropriate similar client library should run 

colocated on the same computer as the user’s application. 

Encryption should use a pluggable mechanism that allows users to choose their de- 

sired encryption scheme. It should also store metadata about that encryption scheme to 

allow users to recover their data using the appropriate decryption mechanism in cases 

where their encryption choices are changed or upgraded. 

To support rich access management features, the same encryption key should not be 

used for every file, as having access to one file would result in access to decryption keys for 

all files. Instead, each file should be encrypted with a unique key. This should allow users 

to share access to certain selected files without giving up encryption details for others. 

Because each file should be encrypted di"erently with di"erent keys and potentially 

di"erent algorithms, the metadata about that encryption must be stored somewhere in a 

manner that is secure and reliable. This metadata, along with other metadata about the 

file, including its path, will be stored in the previously discussed metadata storage system, 

encrypted by a deterministic, hierarchical encryption scheme. A hierarchical encryption 

scheme based on BIP32 [46] will allow subtrees to be shared without sharing their parents 

and will allow some files to be shared without sharing other files. See section 4.11 for a 

discussion of our path-based hierarchical deterministic encryption scheme. 
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 Audits and reputation 

Incentivizing storage nodes to accurately store data is of paramount importance to the 

viability of this whole system. It is essential to be able to validate and verify that storage 

nodes are accurately storing what they have been asked to store. 

Many storage systems use probabilistic per-file audits, called proofs of retrievability, 

as a way of determining when and where to repair files [47, 48]. We are extending the 

probabilistic nature of common per-file proofs of retrievability to range across all possible 

files stored by a specific node. Audits, in this case, are probabilistic challenges that confirm, 

with a high degree of certainty and a low amount of overhead, that a storage node is well- 

behaved, keeping the data it claims, and not susceptible to hardware failure or malintent. 

Audits function as “spot checks” [49] to help calculate the future usefulness of a given 

storage node. 

In our storage system, audits are simply a mechanism used to determine a node’s 

degree of stability. Failed audits will result in a storage node being marked as bad, which 

will result in redistributing data to new nodes and avoiding that node altogether in the 

future. Storage node uptime and overall health are the primary metrics used to determine 

which files need repair. 

As is the case with proofs of retrievability [47, 48], this auditing mechanism does not 

audit all bytes in all files. This can leave room for false positives, where the verifier believes 

the storage node retains the intact data when it has actually been modified or partially 

deleted. Fortunately, the probability of a false positive on an individual partial audit is 

easily calculable (see section 7.2). When applied iteratively to a storage node as a whole, 

detection of missing or altered data becomes certain to within a known and modifiable 

error threshold. 

A reputation system is needed to persist the history of audit outcomes for given node 

identities. Our overall framework has flexible requirements on the use of such a system, 

but see section 4.15 for a discussion of our initial approach. 

 
 

 Data repair 

Data loss is an ever-present risk in any distributed storage system. While there are many 

potential causes for file loss, storage node churn (storage nodes joining and leaving the 

network) is the largest leading risk by a significant degree compared to other causes. As 

discussed in section 2.5, network session time in many real world systems range from 

hours to mere minutes [7]. While there are many other ways data might get lost, such 

as corruption, malicious behavior, bad hardware, software error, or user initiated space 

reclamation, these issues are less serious than full node churn. We expect node churn to 

be the dominant cause of data loss in our network. 

Because audits are validating that conforming nodes store data correctly, all that re- 
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mains is to detect when a storage node stops storing data correctly or goes o½ine and 

then repair the data it had to new nodes. To repair the data, we will recover the original 

data via an erasure code reconstruction from the remaining pieces and then regenerate 

the missing pieces and store them back in the network on new storage nodes. 

It is vital in our system to incentivize storage node participants to remain online for 

much longer than a few hours. To encourage this behavior, our payment strategy will 

involve rewarding storage node operators that keep their nodes participating for months 

and years at a time. 

 
 

 Payments 

Payments, value attribution, and billing in decentralized networks are a critical part of 

maintaining a healthy ecosystem of both supply and demand. Of course, decentralized 

payment systems are still in their infancy in a number of ways. 

For our framework to achieve low latency and high throughput, we must not have 

transactional dependencies on a blockchain (see section 2.10). This means that an ade- 

quately performant storage system cannot a"ord to wait for blockchain operations. When 

operations should be measured in milliseconds, waiting for a cluster of nodes to proba- 

bilistically come to agreement on a shared global ledger is a non-starter. 

Our framework instead emphasizes game theoretic models to ensure that participants 

in the network are properly incentivized to remain in the network and behave rationally to 

get paid. Many of our decisions are modeled after real-world financial relationships. Pay- 

ments will be transferred during a background settlement process in which well-behaved 

participants within the network cooperate. Storage nodes in our framework should limit 

their exposure to untrusted payers until confidence is gained that those payers are likely 

to pay for services rendered. 

In addition, the framework also tracks and aggregates the value of the consumption of 

those services by those who own the data stored on the network. By charging for usage, 

the framework is able to support the end-to-end economics of the storage marketplace 

ecosystem. 

Although the Daatty Cloud Coin network is payment agnostic and the protocol 

does not require a specific payment type, the network assumes the Ethereum-based 

DAATTY CLOUD COIN token as the default mechanism for payment. While we intend 

for the DAATTY CLOUD COIN token to be the primary form of payment, in the future 

other alternate payment types could be implemented, including BitCoin, Ether, credit 

or debit card, ACH transfer, or even physical transfer of live goats. 



 

 

 

 

4. Concrete implementation 

 
We believe the framework we’ve described to be relatively fundamental given our design 

constraints. However, within the framework there still remains some freedom in choosing 

how to implement each component. 

In this section, we lay out our initial implementation strategy. We expect the details 

contained within this section to change gradually over time. However, we believe the 

details outlined here are viable and support a working implementation of our framework 

capable of providing highly secure, performant, and durable production-grade Cloud stor- 

age. 

As with our previous version [37], we will publish changes to this concrete architecture 

through our Daatty Cloud Coin Improvement Proposal process [50]. 

 

 Definitions 

The following defined terms are used throughout the description of the concrete imple- 

mentation that follows: 

 
 Actors 

Client A user or application that will upload or download data from the network. 

Peer class A cohesive collection of network services and responsibilities. There are three 

di"erent peer classes that represent services in our network: storage nodes, Satel- 

lites, and Uplinks. 

Storage node This peer class participates in the node discovery system, stores data for 

others, and gets paid for storage and bandwidth. 

Uplink This peer class represents any application or service that implements libuplink 

and wants to store and/or retrieve data. This peer class is not expected to remain 

online like the other two classes and is relatively lightweight. This peer class performs 

encryption, erasure encoding, and coordinates with the other peer classes on behalf 

of the customer/client. 

libuplink A library which provides all necessary functions to interact with storage 

nodes and Satellites directly. This library will be available in a number of di"er- 

ent programming languages. 

Gateway A service which provides a compatibility layer between other object stor- 

age services such as Amazon S3 and libuplink exposing an Amazon S3-compatible 

API. 

Uplink CLI A command line interface for uploading and downloading files from the 

network, managing permissions and sharing, and managing accounts. 

Satellite This peer class participates in the node discovery system, caches node address 

information, stores per-object metadata, maintains storage node reputation, aggre- 
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gates billing data, pays storage nodes, performs audits and repair, and manages 

authorization and user accounts. Users have accounts on and trust specific Satel- 

lites. Any user can run their own Satellite, but we expect many users to elect to avoid 

the operational complexity and create an account on another Satellite hosted by a 

trusted third party such as Daatty Cloud Coin Labs, a friend, group, or 

workplace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The three different peer classes 

 
 

 Data 

Bucket A bucket is an unbounded but named collection of files identified by paths. Every 

file has a unique path within a bucket. 

Path A path is a unique identifier for a file within a bucket. A path is an arbitrary string of 

bytes. Paths contain forward slashes at access control boundaries. Forward slashes 

(referred to as the path separator) separate path components. An example path 

might be videos/carlsagan/gloriousdawn.mp4,  where the path components are 

videos, carlsagan, and gloriousdawn.mp4. Unless otherwise requested, we encrypt 

paths before they ever leave the customer’s application’s computer. 

File or Object A file (or object) is the main data type in our system. A file is referred to by a 

path, contains an arbitrary amount of bytes, and has no minimum or maximum size. 

A file is represented by an ordered collection of one or more segments. Segments 

have a fixed maximum size. A file also supports a limited amount of key/value user- 

defined fields called extended attributes. Like paths, the data contained in a file is 

encrypted before it ever leaves the client computer. 

Extended attribute An extended attribute is a user defined key/value field that is as- 

sociated with a file. Like other per-file metadata, extended attributes are stored 

encrypted. 

Segment A segment represents a single array of bytes, between 0 and a user-configurable 

maximum segment size. See section 4.8.2 for more details. 

Remote Segment A remote segment is a segment that will be erasure encoded and 

distributed across the network. A remote segment is larger than the metadata re- 



Chapter 4. Concrete implementation 29 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Files, segments, stripes, erasure shares, and pieces  
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quired to keep track of its bookkeeping, which includes information such as the IDs 

of the nodes that the data is stored on. 

Inline Segment An inline segment is a segment that is small enough where the data 

it represents takes less space than the corresponding data a remote segment will 

need to keep track of which nodes had the data. In these cases, the data is stored 

“inline” instead of being stored on nodes. 

Stripe A stripe is a further subdivision of a segment. A stripe is a fixed amount of bytes 

that is used as an encryption and erasure encoding boundary size. Erasure encoding 

happens on stripes individually, whereas encryption may happen on a small multiple 

of stripes at a time. All segments are encrypted, but only remote segments erasure 

encode stripes. A stripe is the unit on which audits are performed. See section 4.8.3 

for more details. 

Erasure Share When a stripe is erasure encoded, it generates multiple pieces called era- 

sure shares. Only a subset of the erasure shares are needed to recover the original 

stripe. Each erasure share has an index identifying which erasure share it is (e.g., 

the first, the second, etc.). 

Piece When a remote segment’s stripes are erasure encoded into erasure shares, the era- 

sure shares for that remote segment with the same index are concatenated together, 

and that concatenated group of erasure shares is called a piece. If there are n era- 

sure shares after erasure encoding a stripe, then there are n pieces after processing 

a remote segment. The ith piece is the concatenation of all of the ith erasure shares 

from that segment’s stripes. See section 4.8.5 for more details. 

Pointer A pointer is a data structure that either contains the inline segment data, or 

keeps track of which storage nodes the pieces of a remote segment were stored on, 

along with other per-file metadata. 

 
 

 Peer classes 

Our overall strategy extends from our previous version [37] and also heavily mirrors dis- 

tributed storage systems such as the Google File System [26] (and other GFS-like sys- 

tems [27, 51, 52]) and the Lustre distributed file system [28]. In every case, there are three 

major actors in the network: metadata servers, object storage servers, and clients. Object 

storage servers hold the bulk of the data stored in the system. Metadata servers keep 

track of per-object metadata and where the objects are located on object storage servers. 

Clients provide a coherent view and easy access to files by communicating with both the 

metadata and object storage servers. 

Lustre’s architecture is proven for high performance. The majority of the top 100 fastest 

supercomputers use Lustre for their high-performance, scalable storage [28]. While we 

don’t expect to achieve equal performance over a wide-area network, we expect dramat- 

ically better performance than other architectures. Any limitation, if any, we experience 

in performance will be due to factors besides our overall architecture. 

Our previous version used di"erent names for each component. What we previously 
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referred to as Daatty Cloud Coin Share, we now refer to as simply storage nodes. Our 

formerly central- ized single Bridge instance can now be run by anyone and is referred 

to as a Satellite. Our libDaatty Cloud Coin library will be made to be backwards 

compatible where possible, but we now refer to client software as Uplinks. 

 
 

 Storage node 

The main duty of the storage node is to reliably store and return data. Node operators 

are individuals or entities that have excess hard drive space and want to earn income 

by renting their space to others. These operators will download, install, and configure 

Daatty Cloud Coin software locally, with no account required anywhere.1 They will then 

configure disk space and per-Satellite bandwidth allowance. During node discovery, 

storage nodes will advertise how much bandwidth and hard drive space is available, 

and their designated DAATTY CLOUD COIN token wallet address. 

To simplify lifecycle management for ephemeral files, storage nodes also keep track 

of optional per-piece “time-to-live”, or TTL, designations. Pieces may be stored with a 

specific TTL expiry where data is expected to be deleted after the expiration date. If no 

TTL is provided, data is expected to be stored indefinitely. This means storage nodes have 

a database of expiration times and must occasionally clear out old data. 

Storage nodes must additionally keep track of signed bandwidth allocations (see sec- 

tion 4.17) to send to Satellites for later settlement and payment. This also requires a small 

database. Both TTL and bandwidth allocations are stored in a SQLite [53] database. 

Storage nodes can choose with which Satellites to work. If they work with multiple 

Satellites (the default behavior), then payment may come from multiple sources on vary- 

ing payment schedules. Storage nodes are paid by specific Satellites for (1) returning data 

when requested in the form of egress bandwidth payment, and for (2) storing data at rest. 

Storage nodes are expected to reliably store all data sent to them and are paid with the 

assumption that they are faithfully storing all data. Storage nodes that fail random audits 

will be removed from the pool, can lose funds held in escrow to cover additional costs, and 

will receive limited to no future payments. Storage nodes are not paid for the initial trans- 

fer of data to store (ingress bandwidth). This is to discourage storage nodes from deleting 

data only to be paid for storing more, which became a problem with our previous ver- 

sion [37]. While storage nodes are paid for repair egress bandwidth usage, some Satellites 

may opt to pay less than normal retrieval egress bandwidth usage. Storage nodes are not 

paid for node discovery or any other maintenance tra c. 

Storage nodes will support three methods:  get, put, and delete.  Each method will 

take a piece ID, a Satellite ID, a signature from the associated Satellite instance, and a 

bandwidth allocation (see section 4.17). The Satellite ID forms a namespace. An identical 

piece ID with a di"erent Satellite ID refers to a di"erent piece. 
1Registration with a US-1099 tax form service may be required. See section 4.21. 
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The put operation will take a stream of bytes and an optional TTL and store the bytes 

such that any subrange of bytes can be retrieved again via a get operation. Get operations 

are expected to work until the TTL expires (if a TTL was provided) or until a delete operation 

is received, whichever comes first. 

Storage nodes will allow administrators to configure maximum allowed disk space and 

per-Satellite bandwidth usage over the last rolling 30 days. They will keep track of how 

much is remaining of both, and reject operations that do not have a valid signature from 

the appropriate Satellite. 

The storage node is being developed and will be released as open source software. 

 
 

 Node identity 

During setup, storage nodes, Satellites, and Uplinks all generate their own identity and 

certificates for use in the network. This node ID is used for node discovery and routing. 

Each node will operate its own certificate authority, which requires a public/private 

key pair and a self-signed certificate. The certificate authority’s private key will ideally 

be kept in cold storage to prevent key compromise. It’s important that the certificate 

authority private key be managed with good operational security because key rotation for 

the certificate authority will require a brand new node ID. 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: The different keys and certificates that compose a storage node’s overall 

identity. Each row represents a private/public key pair. 

 

The public key of the node’s certificate authority determines its node ID. As in S/Kadem- 

lia [32], the node ID will be the hash of the public key and will serve as a proof of work for 

joining the network. Unlike BitCoin’s proof of work [23], the proof of work will be 

depen- dent on how many trailing zero bits one can find in the hash output. This means 

that the node ID (which may end with a number of trailing zero bits) will still be 

usable in a bal- 
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anced Kademlia [8] tree. This cost is meant to make Sybil attacks prohibitively expensive 

and time consuming. 

Each node will have a revocable leaf certificate and key pair that is signed by the node’s 

certificate authority. Nodes use the leaf key pair for communication. Each leaf has a signed 

timestamp that Satellites keep track of per node. Should the leaf become compromised, 

the node can issue a new leaf with a later timestamp. Interested peers will make note of 

newly seen leaf timestamps and reject connections from nodes with older leaf certificates. 

As an optimized special case, peers will not need to make a note when the leaf certificate 

and certificate authority share the same timestamp. 

 
 

 Peer-to-peer communication 

Initially, we are using the gRPC [54] protocol on top of the Transport Layer Security protocol 

(TLS) [55] on top of the µTP [56] transport protocol with added Session Traversal Utilities 

for NAT (STUN) functionality [29]. STUN provides NAT traversal; µTP provides reliable, or- 

dered delivery (like TCP would) with LEDBAT [57] functionality; TLS provides privacy and 

authentication; and gRPC provides multiplexing and a convenient programmer interface. 

LEDBAT allows competing internet tra c to take priority, providing a more graceful user 

experience to home operators with less network usage interference. Over time, we will 

replace TLS with a more flexible secure transport framework (such as the Noise Protocol 

Framework [58]) to reduce round trips due to connection handshakes in situations where 

the data is already encrypted and forward secrecy isn’t necessary. 

When using authenticated communication such as TLS or Noise, every peer can ascer- 

tain the ID of the node with which it is speaking by validating the certificate chain and 

hashing its peer’s certificate authority’s public key. It can then be estimated how much 

work went into constructing the node ID by considering the number of trailing zero bits 

at the end of the ID. Satellites can configure a minimum proof of work required to pass 

an audit (section 4.13) such that, over time, the network will require greater proofs of work 

due to natural user intervention. 

For the few cases where a node cannot achieve a successful connection through a 

NAT or firewall (via STUN [29], uPnP [30], NATPmP [31], or similar techniques), manual 

intervention and port forwarding will be required. In the future, nodes unable to create a 

connection through their firewalls may rely on tra c proxying from other, more available 

nodes, for a fee. Nodes can also provide assistance to other nodes for initial STUN setup, 

public address validation, and so forth. 

 
 

 Node discovery 

At this point, we have storage nodes and we have a means to identify and communicate 

with them if we know their address. We must account for the fact that storage nodes will 
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often be on consumer internet connections and behind routers with constantly changing 

IP addresses. Therefore, the node discovery system’s goal is to provide a means to look 

up a node’s latest address by node ID, somewhat similar to the role DNS provides for the 

public internet. 

The Kademlia distributed hash table (DHT) is a key/value store with a built-in node 

lookup protocol. We utilize Kademlia as our primary source of truth for DNS-like func- 

tionality for node lookup, while ignoring the key/value storage aspects of Kademlia. Using 

only Kademlia for node lookup eliminates the need for some other functionality Kademlia 

would otherwise require such as owner-based key republishing, neighbor-based key re- 

publishing, storage and retrieval of values, and so forth. Furthermore, we avoid a number 

of other known attacks by using the S/Kademlia [32] extensions where appropriate. 

Unfortunately, DHTs such as Kademlia require multiple network round trips for many 

operations, which makes it di cult to achieve millisecond-level response times. To solve 

this problem, we add a basic decentralized caching service on top of Kademlia. 

The caching service will live independently in each Satellite and attempt to talk to ev- 

ery storage node in the network on an ongoing basis, perhaps once per hour. The caching 

service will then cache the last known good address for each node, and evict nodes that it 

hasn’t talked to after a certain period of time. Storage nodes will not need to be extended 

to know about these caching services. We expect this to scale for the reasonable future, 

as ping operations are inexpensive, but admit a new solution may ultimately be neces- 

sary. Fortunately, space requirements are negligible. For instance, caching addresses for 

a network of 80k nodes can be done with only 5MB of memory.2 

Based on this design, each Satellite’s cache will not be expected to be a primary source 

of truth, and results in the cache may be stale. However, due to our redundant storage 

strategy, the storage network will be resilient against an expected degree of node churn 

and staleness. Therefore, the system will be robust even if some lookups in the cache 

fail or return incorrect addresses. Furthermore, because our peer-to-peer communication 

system already provides peer authentication, a node discovery cache that sometimes re- 

turns faulty or deliberately misleading address lookup responses can only cause a loss of 

performance but not correctness. 

Although the Satellite caches are not the primary source of truth, because repair (sec- 

tion 4.14) requires rapid determination of whether a node is online or o½ine, lookups in 

our system will stop with the cache lookup and will not attempt another lookup using 

Kademlia. Only after cases of failed audit requests will a fallback, nonconcurrent lookup 

in Kademlia be performed to correct for potentially stale cache information. 

In addition to being included in every Satellite, we plan to host and help set up some 

well-known community-run node discovery caches. These caches will perform the duty 

of quickly returning address information for a given node ID if the node has been online 

recently. 
2 This is assuming an ordered in-memory list of 4-tuples of node ID (32 bytes), IP address (16 bytes for IPv6), 

port (2 bytes), and timestamp (4 bytes). 80000 · (32B + 16B + 2B + 4B) ≈ 4.12MB 
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Kademlia messages will use our peer-to-peer communication protocol (section 4.5), 

which includes confidentiality and peer identification. Because this requires crypto- 

graphic setup, connections to Kademlia neighbors and frequent contacts will be cached 

where possible. 

With each Kademlia message shared on the network, nodes will include their available 

disk space, per-Satellite bandwidth availability, DAATTY CLOUD COIN wallet address, and 

any other meta- data the network needs. The node discovery cache will collect this 

information provided by the nodes, allowing faster lookups for it. 

 
 Mitigating Sybil attacks 

While we’ve adopted the proof-of-work scheme S/Kademlia proposes to partially address 

Sybil attacks, we extend Kademlia with application specific integration to further defend 

our network. 

Given two storage nodes, A and B, storage node B is not allowed to enter storage node 

A’s routing table until storage node B can present a signed message from a Satellite C that 

storage node A trusts claiming that B has passed enough audits that C trusts it (sections 

4.13 and 4.15). This ensures that only nodes with verified disk space have the opportunity 

to participate in the routing layer. 

A node that is allowed to enter routing tables is considered vetted and lookups only 

progress through vetted nodes. To make sure unvetted nodes can still be found, vetted 

nodes keep unbounded lists of their unvetted neighbors provided that the XOR distance 

to all unvetted neighbors is no farther than the farthest of the k-closest vetted neighbors. 

Unvetted nodes keep their k-nearest vetted nodes up-to-date. 

 
 

 Redundancy 

We use the Reed-Solomon erasure code [59]. To implement our solution for reducing the 

e"ects of long-tails (see section 3.4.2), we choose 4 numbers for each object that we store, 

k, m, o, and n, such that k ≤ m ≤ o ≤ n. The standard Reed-Solomon numbers are k and 

n, where k is the minimum required number of pieces for reconstruction, and n is the 

total number of pieces generated during creation. 

The minimum safe and optimal values, respectively, are m and o. The value m is cho- 

sen such that if a Satellite notices the amount of available pieces has fallen below m, it 

triggers a repair immediately in an attempt to make sure we always maintain k or more 

pieces (m is called r0 in Giroire et al. [36]). To achieve our long-tail performance improve- 

ments [39, 40, 43, 44], the value o is chosen such that during uploads and repairs, as soon 

as o pieces have finished uploading, remaining pieces up to n are canceled. Furthermore, 

o is chosen such that storing o pieces is all that is needed to achieve the desired durability 

goals; n is thus chosen such that storing n pieces will be excess durability. 
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Figure 4.4: The relationship between k, m, o, and n. 

 
The amount of long tail uploads we can tolerate is n – o, and thus is the amount of slow 

nodes to which we are immune. The amount of nodes that can go temporarily o½ine at 

the same time without triggering a repair is o – m.  The safety bu"er to avoid losing the 

data between the time we recognize the data requires a repair and the actual repair is 

executed is m – k. 

See section 7.3 for how we select our Reed-Solomon numbers. Also see section 4.14 

for a discussion about how we repair data as its durability drops over time. 

 
 

 Structured file storage 

 Files with extended attributes 

Many applications benefit from being able to keep metadata alongside files. Amazon S3 

supports “object metadata” [60] to assist with this need. This functionality is called “ex- 

tended attributes” in many POSIX compatible systems, which name we continue using in 

our system. Every file will include a limited set of user-specified key-value pairs (extended 

attributes) that will be stored alongside other metadata about the file. 

 
 Files as Segments 

 
 
 
 

 
In our previous version [37], the term shard referred to pieces on storage nodes, whereas 

sharding referred to segmenting a file into smaller chunks for easier processing. With the 

addition of erasure coding in our previous version, these terms became somewhat con- 

fusing, so we have decided to distinguish each meaning with new words. 
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The sharding process is now called segmenting, and the highest level subdivision of 

a file’s stream of data is called a segment. Unfortunately, there is general inconsistency 

using these terms in the literature. GFS refers to segments as chunks [26]. Lustre refers to 

segments as stripes [28], but we use the term stripes for a further subdelineation. 

A file may be small enough that it consists of only one segment. If that segment is 

smaller than the metadata required to store it on the network, the data will be stored 

inline with the metadata.3 We call this an inline segment. 

For larger files, the data will be broken into one or more large remote segments. Seg- 

menting in this manner o"ers numerous advantages to security, privacy, performance, 

and availability. As in other distributed storage systems [26–28, 51, 52], segmenting large 

files (e.g. videos) and distributing the segments across the network reduces the impact of 

content delivery on any given node, as bandwidth demands are distributed more evenly 

across the network. As with our previous version [37], standardized sizes help frustrate 

attempts to determine the content of a given segment and can help obscure the flow of 

data through the network. In addition, the end user can take advantage of parallel trans- 

fer, similar to BitTorrent [62] or other peer-to-peer networks. Lastly, capping the size of 

segments allows for more uniform storage node filling. Thus, a node only needs enough 

space to store a segment to participate in the network, and a client doesn’t need to find 

nodes that have enough space for a large file. 

 
 Segments as Stripes 

 
 
 
 
 
 

 
In many situations, it’s important to access a subsection of a larger piece of data. Some 

file formats, such as video files or disk images, support seeking, where only a subset of the 

data is needed for read operations. As the creators of audio CDs discovered, it’s useful to 

be able to decode small parts of a segment to support these operations [38]. 

For this purpose, a stripe defines a subset of a segment and should be no more than 

a couple of kilobytes in size. Encryption happens on a small multiple of stripes, whereas 

erasure encoding happens on a single stripe at a time. Because we use authenticated 

encryption, every encryption batch has a slight overhead, so slightly larger encryption 

sizes are preferred. However, audits happen on stripes, and we want audit bandwidth 

usage to be small. 
3 The Linux file system Ext4 performs the same optimization with inline inodes [61]. 
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For the reader familiar with the zfec library, in filefec mode, zfec refers to a stripe as a 

chunk [42]. 

 
 Stripes as Erasure Shares 

 

 

 

 

As discussed in sections 3.4 and 4.7, erasure codes give us the chance to control net- 

work durability in the face of unreliable storage nodes. 

Stripes are the boundary by which we perform erasure encoding. In a (k, n) erasure 

code scheme, n erasure shares are generated for every stripe [59]. For example, perhaps 

a stripe is broken into 40 erasure shares (n = 40), where any 20 (k = 20) are needed to 

reconstruct the stripe. Each of the 40 erasure shares will be 1/20th the size of the original 

stripe. 

Erasure encoding a single stripe at a time allows us to read small portions of a large 

segment without retrieving the entire segment first [38]. It also allows us to stream data 

into the network without staging it beforehand, and it enables a number of other useful 

features. 

See section 7.3.3 for a breakdown of how varying the erasure code parameters a"ects 

availability and redundancy. 

 
 Erasure Shares as Pieces 

 

 
 
 
 
 
 

 

 
Because stripes are already small, erasure shares are often much smaller, and the meta- 

data to keep track of all of them separately will be immense relative to their size. All n 
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erasure shares have a well-defined index associated with them. More specifically, for a 

fixed stripe and any given n, the ith share of an erasure code will always be the same. As 

with the zfec library’s filefec mode [42], instead of keeping track of all of the erasure shares 

separately, we pack all of the erasure shares with the same index into a piece. In a (k, n) 

scheme, there are n pieces, where each piece i is the ordered concatenation of all of the 

erasure shares with index i. As a result, where each erasure share is 1/kth of a stripe, each 

piece is 1/kth of a segment, and only k pieces are needed to recover the full segment. A 

piece is what we store on a storage node. 

Satellites generate a brand-new, randomly chosen root piece ID each time a new up- 

load begins. The Uplink will keep the root piece ID secret and send a node-specific piece 

ID to each storage node, formed by taking the Hash-based Message Authentication Code 

(HMAC) of the root piece ID and the node’s ID. This serves to obscure what pieces belong 

together from storage nodes. The root piece ID is stored in the pointer. 

Storage nodes namespace pieces by Satellite ID. If a piece ID used by one Satellite is 

reused by another Satellite, each Satellite can safely assume the shared piece ID refers to 

a di"erent piece than the other Satellite, with di"erent content and lifecycle. 

 
 Pointers 

The data owner will need knowledge of how a remote segment is broken up and where 

in the network the pieces are located to recover it. This is contained in the pointer data 

structure. 

A pointer includes: which nodes are storing the pieces, encryption information, erasure 

coding details, the repair threshold amount that determines how much redundancy a 

segment must lose before triggering a repair, the amount of pieces that must be stored 

to consider a repair to be successful, and other details. If the segment is an inline segment, 

the pointer contains the entire segment’s binary data instead of which nodes store the 

pieces. 

In our previous version [37], we used two data structures to keep track of the afore- 

mentioned kinds of information: frames and pointers. In this version, we have combined 

these data structures into a single data structure and elected to call the new combined 

data structure a pointer. 

 
 

 Metadata 

The metadata storage system in the Daatty Cloud Coin network predominantly stores 

pointers. Other individual components of the Daatty Cloud Coin network 

communicate with the pointer database to store and retrieve pointers by path to 

perform actions. 

The most trivial implementation for the metadata storage functionality we require will 
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be to simply have each user use their preferred trusted database, such as MongoDB, Mari- 

aDB, Couchbase, PostgreSQL, SQLite [53], Cassandra [63], Spanner [64], or CockroachDB, 

to name a few. In many cases, this will be acceptable for specific users, provided those 

users are managing appropriate backups of their metadata. Indeed, the types of users 

who have petabytes of data to store can most likely manage reliable backups of a single 

relational database storing only metadata. 

On one hand, there are a few downsides to letting clients manage their metadata in 

a traditional database system, such as: 

• Availability - The availability of the user’s data is tied entirely to the availability of 

their metadata server. The counterpoint is that availability can be made arbitrar- 

ily good with existing trusted distributed solutions, such as Cassandra, Spanner, or 

CockroachDB, assuming an appropriate amount of e"ort is put into maintaining 

operations. Furthermore, any individual metadata service downtime does not a"ect 

the rest of the network. In fact, the network as a whole can never go down. 

• Durability - If the metadata server su"ers a catastrophic failure without backups, all 

of the user’s data will be lost. This is already true with encryption keys, but a tradi- 

tional database solution considerably increases the risk area from using encryption 

keys. Fortunately, the metadata itself can be periodically backed up into the 

Daatty Cloud Coin network. This in turn allows us to only keep track of the 

metadata of this metadata, further decreasing the amount of critical information 

that must be stored elsewhere. 

• Trust - The user has to trust the metadata server. 

On the other hand, there are a few upsides: 

• Control - The user is in complete control of all of their data. There is no organiza- 

tional single point of failure. The user is free to choose whatever metadata store 

with whatever trade-o"s they prefer and can even run their own. Like Mastodon [65], 

this solution is still decentralized. Furthermore, in a catastrophic scenario, this de- 

sign is no worse than most other technologies or techniques application developers 

frequently use (databases). 

• Simplicity - Other projects have spent multiple years on shaky implementations of 

Byzantine-fault tolerant consensus metadata storage, with expected performance 

and complexity trade-o"s (see appendix A). We can get a useful product to market 

without doing this work at all. This is a considerable advantage. 

• Coordination Avoidance - Users only need to coordinate with other users on their 

Satellite. If a user has high throughput demands, they can set up their own Satellite 

and avoid coordination overhead from any other user. By allowing Satellite operators 

to select their own database, this will allow a user to choose a Satellite with weaker 

consistency semantics, such as Highly Available Transactions [15], that reduce coor- 

dination overhead within their own Satellite and increase performance even further. 

Our launch goal is to allow customers to store their metadata in a database of their 

choosing. We expect and look forward to new systems and improvements specifically in 

this component of our framework. 
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Please see appendix A for more about why we’ve chosen to currently avoid trying to 

solve the problem of Byzantine distributed consensus. See section 6.2 for a discussion of 

future plans. 

 
 

 Satellite 

The collection of services that hold this metadata is called the Satellite.  Users of the 

network will have accounts on a specific Satellite instance, which will:  store their file 

metadata, manage authorization to data, keep track of storage node reliability, repair 

and maintain data when redundancy is reduced, and issue payments to storage nodes 

on the user’s behalf. Notably, a specific Satellite instance does not necessarily constitute 

one server. A Satellite may be run as a collection of servers and be backed by a horizontally 

scalable trusted database for higher uptime. 

Daatty Cloud Coin implements a thin-client model that delegates trust around 

managing files’ lo- cation metadata to the Satellite service which manages data 

ownership. Uplinks are thus able to support the widest possible array of client 

applications, while Satellites require high uptime and potentially significant 

infrastructure, especially for an active set of files. Like storage nodes, the Satellite 

service is being developed and will be released as open source software. Any 

individual or organization can run their own Satellite to facilitate network access. 

The Satellite is, at its core, one of the most complex and yet straightforward compo- 

nents of our initial release that fulfills our framework. Notwithstanding future framework- 

conforming releases, the initial Satellite is a standard application server that wraps a 

trusted database, such as PostgreSQL, Cassandra, or whichever solution the metadata 

system chooses (section 4.9). Users sign in to a specific Satellite with account credentials. 

Data available through one Satellite instance is not available through another Satellite 

instance, though various levels of export and import are planned (section 6.2). 

With respect to customer data, the Satellite is never given data unencrypted and does 

not hold encryption keys. The only knowledge of an object that the Satellite is able to 

share with third parties is its existence, rough size, and other metadata such as access 

patterns. This system protects the client’s privacy and gives the client complete control 

over access to the data, while delegating the responsibility of keeping files available on 

the network to the Satellite. 

Clients may use Satellites run by a third-party. Because Satellites store almost no data 

and have no access to keys, this is a large improvement over the traditional data-center 

model. Many of the features Satellites provide, like storage node selection and reputation, 

leverage considerable network e"ects. Reputation data sets grow more useful as they in- 

crease in size, indicating that there are strong economic incentives to share infrastructure 

and information in a Satellite. 

Providers may choose to operate public Satellites as a service. Application developers 
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then delegate trust regarding the location of their data on the network to a specific Satel- 

lite, as they would to a traditional object store but to a lesser degree. Future updates will 

allow for various distributions of responsibilities, and thus levels of trust, between customer 

applications and Satellites. 

The Satellite instance is made up of these components: 

• A full node discovery cache (section 4.6) 

• A per-object metadata database indexed by encrypted path (section 4.9) 

• An account management and authorization system (section 4.12) 

• A storage node reputation, statistics, and auditing system (section 4.13) 

• A data repair service (section 4.14) 

• A storage node payment service (section 4.16) 

While our launch goal of many Satellites is a step ahead of our previous system’s Bridge 

implementation [37], this is still just one point on our decentralization journey and we 

expect to continue to find ways to decentralize our components further. 

 
 

 Encryption 

Our encryption choice is authenticated encryption, with support for both the AES-GCM 

cipher and the Salsa20 and Poly1305 combination NaCl calls “Secretbox” [66]. Authen- 

ticated encryption is used so that the user can know if anything has tampered with the 

data. 

Data is encrypted in blocks of small batches of stripes, recommended to be 4KB or 

less [67]. While the same encryption key is used for every encryption batch in a segment, 

segments may have di"erent encryption keys. However, the nonce for each encryption 

batch must be monotonically incrementing from the previous batch throughout the en- 

tire segment. The nonce wraps around to 0 if the counter reaches the maximum rep- 

resentable nonce. To prevent reordering attacks, the starting nonce of each segment is 

deterministically chosen based on the segment number. When multiple segments are 

uploaded in parallel, such as in the case of Amazon S3’s multipart-upload feature, the 

starting nonce for each segment can be calculated from the starting nonce of the file 

and the segment number. This scheme protects the content of the data from the storage 

node housing the data. The data owner retains complete control over the encryption key, 

and thus over access to the data. 

Paths are also encrypted. Like BIP32 [46], the encryption is hierarchical and determin- 

istic, and each path component is encrypted separately. To explain how we do this, we 

start with a scheme for determining a secret value for each path component. Let’s say a 

given path p has unencrypted path components p1, p2, . . . , pn and we want to determine 

an encrypted path e with path components e1, e2, . . . , en.  We assume a predetermined 

root secret, s0. This root secret is chosen by the user and, like all other encryption secrets, 

never leaves the client computer. We recursively define si  = HMAC(si–1, pi). A key K(si) can 
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be deterministically generated from si. We then define the encrypted path component 

ei  = enc(K(si–1), pi), such that the new path e  is e1, e2, . . . , en.  HMAC-SHA256 or HMAC- 

SHA512 are used for key derivations. 

This construction allows a client to share access to some subtree of the path without 

access to its parents or other paths of the same depth. For example, suppose a client 

would like to share access to all paths with the same prefix p1, p2, p3 with another client. 

The client would give the other client e1, e2, e3 and s3. This allows the client to decrypt and 

access any arbitrary e4, as K(s3) is known to them, without allowing the client to decrypt 

e3 or earlier. More generally in this case, the client could decrypt and access any arbitrary 

ei , if and only if i > 3. 

Path encryption is enabled by default but is otherwise optional, as encrypted paths 

make e cient sorted path listing challenging. When path encryption is in use (a per- 

bucket feature), objects are sorted by their encrypted path name, which is determinis- 

tic but otherwise relatively unhelpful when the client application is interested in sorted, 

unencrypted paths. For this reason, users can opt out of path encryption. When path 

encryption is disabled, unencrypted paths are only revealed to the user’s chosen Satellite, 

but not to the storage nodes. Storage nodes continue to have no information about the 

path and metadata of the pieces they store. 

 
 

 Authorization 

Encryption protects the privacy of data while allowing for the identification of tamper- 

ing, but authorization allows for the prevention of tampering by disallowing clients from 

making unauthorized edits. Users who are authorized will be able to add, remove, and 

edit files, while users who are not authorized will not have those abilities. Metadata op- 

erations will be authorized. Users will authenticate with their Satellite, which will allow 

them access to various operations according to their authorization configuration. 

Our initial metadata authorization scheme uses macaroons [68]. Macaroons are a type 

of bearer token that authorizes the bearer to some restricted resources. Macaroons are 

especially interesting in that they allow for rich contextual decentralized delegation. In 

other words, they provide the property that anyone can add restrictions in a way in which 

those restrictions cannot later be removed, without coordination with a central party. 

We use macaroons to restrict which operations can be applied and to which encrypted 

paths they can be applied. In this way, macaroons provide a mechanism to restrict del- 

egated access to specific encrypted path prefixes, specific files, and specific operations, 

such as read only access or perhaps append only access. Each account has a root mac- 

aroon and operations are validated against a supplied macaroon’s set of caveats. Our 

macaroons are further caveated with optional expirations and revocation tokens, which 

allow users to revoke macaroons programmatically. 

Because we want to restrict Satellite operations, and Satellites only have access to en- 
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crypted paths, our authorization scheme must work on encrypted paths. For access del- 

egation to specific path prefixes, path separation boundaries between path components 

must remain across encryption. This implies reduced functionality and/or performance 

for path delimiters other than a forward slash. 

Once the Uplink is authorized with the Satellite, the Satellite will approve and sign for 

operations to storage nodes, including bandwidth allocations (section 4.17). The Uplink 

must retrieve valid signatures from the Satellite prior to operations with storage nodes. 

All operations on a storage node require a specific Satellite ID and associated signature. 

A storage node will reject operations not signed by the appropriate Satellite ID. Storage 

nodes will not allow operations signed by one Satellite to apply to objects owned by 

another, unless explicitly granted by the owning Satellite. 

Our initial implementation does not detect or attempt to mitigate unexpected file re- 

moval or rollback by a misbehaving Satellite. Our trust model expects that a user’s Satellite 

is well-behaved and stores and repairs data reliably. If a Satellite cannot be trusted, it is un- 

likely to repair data on a client’s behalf anyway. However, a future implementation could 

add more thorough detection for Satellite-based file system tampering, via a scheme as 

in systems such as SUNDR, SiRiUS, or Plutus [69–71]. 

 
 

 Audits 

In a network with untrusted nodes, validating that those nodes are returning data ac- 

curately and otherwise behaving as expected is vital to ensuring a properly functioning 

system. Audits are a way to confirm that nodes have the data they claim to have. Auditors, 

such as Satellites, will send a challenge to a storage node and expect a valid response. A 

challenge is a request to the storage node in order to prove it has the expected data. 

Some distributed storage systems, including the previous version of Daatty Cloud 

Coin [37], discuss Merkle tree proofs, in which audit challenges and expected responses 

are generated at the time of storage as a form of proof of retrievability [47]. By using a 

Merkle tree [72], the amount of metadata needed to store these challenges and 

responses is negligible. 

Proofs of retrievability can be broadly classified into limited and unlimited schemes 

[49]. The Merkle tree variety used in our previous version is one such limited scheme. 

Unfortunately, in such a scheme, the challenges and expected responses must be pre- 

generated. As we learned with our previous version, without a periodic regeneration of 

these challenges, a storage node can begin to pass most audits without storing all of 

the requested data by keeping track of which challenges exist and then saving only the 

expected responses. During our previous version, we began to consider Reed-Solomon 

erasure coding to help us solve this problem. 

An assumption in our storage system is that most storage nodes behave rationally, and 

incentives are aligned such that most data is stored faithfully. As long as that assumption 

holds, Reed-Solomon is able to detect errors and even correct them, via mechanisms 
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such as the Berlekamp-Welch error correction algorithm [39, 73]. We are already using 

Reed-Solomon erasure coding [59] on small ranges (stripes), so as discussed in the HAIL 

system [41], we use erasure coding to read a single stripe at a time as a challenge and 

then validate the erasure share responses. This allows us to run arbitrary audits without 

pre-generated challenges. 

To perform an audit, we first choose a stripe. We request that stripe’s erasure shares 

from all storage nodes responsible. We then run the Berlekamp-Welch algorithm [39, 73] 

across all the erasure shares. When enough storage nodes return correct information, any 

faulty or missing responses can easily be identified. 

Given a specific storage node, an audit might reveal that it is o½ine or incorrect. In 

the case of a node being o½ine, the audit failure may be due to the address in the node 

discovery cache being stale, so another, fresh Kademlia lookup will be attempted. If the 

node still appears to be o½ine, the Satellite places the node in containment mode. In this 

mode, the Satellite will calculate and save the expected response, then continue to try the 

same audit with that node until the node either responds successfully, actively fails the 

audit, or is disqualified for being o½ine too long. Once the node responds successfully, it 

leaves containment mode. 

All audit failures will be stored and saved in the reputation system. Audits additionally 

serve as opportunity to test storage node latency, throughput, responsiveness, and uptime. 

This data will also be saved in the reputation system. 

It is important that every storage node has a frequent set of random audits to gain 

statistical power on how well-behaved that storage node is operating. However, as dis- 

cussed in section 3.7, it is not a requirement that audits are performed on every byte, or 

even on every file. Additionally, it is important that every byte stored in the system has an 

equal probability of being checked for a future audit to every other byte in the system. 

See section 7.2 for a discussion on how many audits are required to be confident data is 

stored correctly. 

 
 

 Data repair 

As storage nodes go o½ine—taking their pieces with them—it will be necessary for the 

missing pieces to be rebuilt once each segment’s pieces fall below the predetermined 

threshold, m. If a node goes o½ine, the Satellite will mark that nodes’ file pieces as missing. 

The node discovery system’s caches have reasonably accurate and up-to-date informa- 

tion about which storage nodes have been online recently. When a storage node changes 

state from recently online to o½ine, this can trigger a lookup in a reverse index within a 

user’s metadata database, identifying all segment pointers that were stored on that node. 

For every segment that drops below the appropriate minimum safety threshold, m, 

the segment will be downloaded and reconstructed, and the missing pieces will be re- 
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generated and uploaded to new nodes. Finally, the pointer will be updated to include 

the new information. 

Users will choose their desired durability with their Satellite which may impact price 

and other considerations. This desired durability (along with statistics from ongoing au- 

dits) will directly inform what Reed-Solomon erasure code choices will be made for new 

and repaired files, and what thresholds will be set for when uploads are successful and 

when repair is needed. See sections 3.4 and 7.3 for how we calculate these values given 

user inputs. 

A direct implication of this design is that, for now, the Satellite must constantly stay 

running. If the user’s Satellite stops running, repairs will stop, and data will eventually 

disappear from the network due to node churn. This is similar to the design of how value 

storing and republishing works in Kademlia [8], which requires the owner to stay online. 

The ingress (or inbound) bandwidth demands of the audit and repair system are large, 

but given standard configuration, the egress (or outbound) demands are relatively small. 

A large amount of data comes into the system for audits and repairs, but only the formerly 

missing pieces are sent back out. While the repair and audit system can run anywhere, 

the bandwidth usage asymmetry means that hosting providers which o"er free ingress 

make for an especially attractive hosting location for users of this system. 

 
 Piece hashes 

Data repair is an ongoing, costly operation that will use significant bandwidth, memory, 

and processing power, often impacting a single operator. As a result, repair resource usage 

should be aggressively minimized as much as possible. 

For repairing a segment to be e"ective at minimizing bandwidth usage, only as few 

pieces as needed for reconstruction should be downloaded. Unfortunately, Reed-Solomon 

is insu cient on its own for correcting errors when only a few redundant pieces are pro- 

vided. Instead, piece hashes provide a better way to be confident that we’re repairing the 

data correctly. 

To solve this problem, hashes of every piece will be stored alongside each piece on 

each storage node. A validation hash that the set of hashes is correct will be stored in 

the pointer. During repair, the hashes of every piece can be retrieved and validated for 

correctness against the pointer, thus allowing each piece to be validated in its entirety. 

This allows the repair system to correctly assess whether or not repair has been completed 

successfully without using extra redundancy for the same task. 
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 Storage node reputation 

Reputation metrics on decentralized networks are a critical part of enabling cooperation 

between nodes where progress would be challenging otherwise. Reputation metrics are 

used to ensure that bad actors within the network are eliminated as participants, improv- 

ing security, reliability, and durability. 

Storage node reputation can be divided into four subsystems. The first subsystem is 

a proof of work identity system, the second subsystem is the initial vetting process, the 

third subsystem is a filtering system, and finally, the fourth system is a preference system. 

The goal of the first system is to require a short proof that the storage node operator is 

invested, through time, stake, or resources. Initially, we are using proof of work. As men- 

tioned in section 4.3, storage nodes require a proof of work as part of identity generation. 

This helps the network avoid some Sybil attacks [74], but we glossed over how proof of 

work di culty is set. We will let Satellite operators set per-Satellite minimum di culty 

required for new data storage. If a storage node has an identity generated with a lower 

di culty than the Satellite’s configured minimum, that storage node will not be a candi- 

date for new data. We expect Satellite operators to naturally increase the minimum proof 

of work di culty requirements over time until a reasonable balance is found. In the case 

of a changing di culty configuration, Satellites will leave existing data on existing nodes 

where possible. Other investment proof schemes are possible, such as a form of proof of 

stake as we proposed in our previous work [75]. 

The second subsystem slowly allows nodes to join the network. When a storage node 

first joins the network, its reliability is unknown. As a result, it will be placed into a vetting 

process until enough data is known about it. We propose the following way to gather data 

about new nodes without compromising the integrity of the network. Every time a file is 

uploaded, the Satellite will select a small number of additional unvetted storage nodes 

to include in the list of target nodes. The Reed-Solomon parameters will be chosen such 

that these unvetted storage nodes will not a"ect the durability of the file, but will allow 

the network to test the node with a small fraction of data until we are sure the node is 

reliable. After the storage node has successfully stored enough data for a long enough 

period (at least one payment period), the Satellite will then start including that storage 

node in the standard selection process used for general uploads. It will also give the node 

a signed message claiming that the vetting process is completed, and that the storage 

node may now enter other nodes’ routing tables (section 4.6.1). Importantly, storage nodes 

get paid during this vetting period, but don’t receive as much data. 

The filtering system is the third subsystem; it blocks bad storage nodes from partici- 

pating. In addition to simply not having done a su cient proof of work, certain actions 

a storage node can take are disqualifying events. The reputation system will be used to 

filter these nodes out from future uploads, regardless of where the node is in the vetting 

process. Actions that are disqualifying include: failing too many audits; failing to return 

data, with reasonable speed; and failing too many uptime checks. 
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If a storage node is disqualified, that node will no longer be selected for future data 

storage and the data that node stores will be moved to new storage nodes. Likewise, if 

a client attempts to download a piece from a storage node that the node should have 

stored and the node fails to return it, the node will be disqualified. Importantly, storage 

nodes will be allowed to reject and fail put operations without penalty, as nodes will be 

allowed to choose which Satellite operators to work with and which data to store. 

It’s worth reiterating that failing too many uptime checks is a disqualifying event. Stor- 

age nodes can be taken down for maintenance, but if a storage node is o½ine too much, 

it can have an adverse impact on the network. If a node is o½ine during an audit, that 

specific audit should be retried until the node responds successfully or is disqualified, to 

prevent nodes from selectively failing to respond to audits. 

After a storage node is disqualified, the node must go back through the entire vetting 

process again. If the node decides to start over with a brand-new identity, the node must 

restart the vetting process from the beginning (in addition to generating a new node 

ID via the proof of work system). This strongly disincentivizes storage nodes from being 

cavalier with their reputation. 

The last subsystem is a preference system. After disqualified storage nodes have been 

filtered out, remaining statistics collected during audits will be used to establish a prefer- 

ence for better storage nodes during uploads. These statistics include performance char- 

acteristics such as throughput and latency, history of reliability and uptime, geographic 

location, and other desirable qualities. They will be combined into a load-balancing se- 

lection process, such that all uploads are sent to qualified nodes, with a higher likelihood 

of uploads to preferred nodes, but with a non-zero chance for any qualified node. Ini- 

tially, we’ll be load balancing with these preferences via a randomized scheme, such as 

the Power of Two Choices [76], which selects two options entirely at random, and then 

chooses the more qualified between those two. 

On the Daatty Cloud Coin network, preferential storage node reputation is only used to 

select where new data will be stored, both during repair and during the upload of 

new files, unlike disqualifying events. If a storage node’s preferential reputation 

decreases, its file pieces will not be moved or repaired to other nodes. 

There is no process planned in our system for storage nodes to contest their reputation 

scores. It is in the best interest of storage nodes to have good uptime, pass audits, and 

return data. Storage nodes that don’t do these things are not useful to the network. 

Storage nodes that are treated by Satellites unfairly will not accept future data from those 

Satellites. See section 4.21 about quality control for how we plan to ensure Satellites are 

incentivized to treat storage nodes fairly. 

Initially, storage node reputation will be individually determined by each Satellite. If a 

node is disqualified by one Satellite, it may still store data for other Satellites. Reputation 

will not initially be shared between Satellites. Over time, reputation will be determined 

globally. 
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 Payments 

In the Daatty Cloud Coin network, payments are made by clients who store data on 

the platform to the Satellite they utilize. The Satellites then pays storage nodes for the 

amount of storage and bandwidth they provide on the network. Payments by clients 

may be through any mechanism (DAATTY CLOUD COIN, credit card, invoice, etc.), but 

payments to storage nodes are via the Ethereum-based ERC20 [77] DAATTY CLOUD 

COIN token. 

Previous distributed systems have handled payments as hard-coded contracts. For 

example, the previous Daatty Cloud Coin network utilized 90-day contracts to 

maintain data on the network. After that period of time, the file was deleted. Other 

distributed storage plat- forms use 15-day renewable contracts that delete data if the 

user does not login every 15 days. Others use 30-day contracts. We believe that the 

most common use case is in- definite storage. To best solve this use case, our network 

will no longer use contracts to manage payments and file storage durations. The default 

assumption is that data will last indefinitely. 

Satellites will pay storage nodes for the data they store and for piece downloads. Stor- 

age nodes will not be paid for the initial transfer of data, but they will be paid for storing 

the data month-by-month. At the end of the payment period, a Satellite will calculate 

earnings for each of its storage nodes. Provided the storage node hasn’t been disqualified, 

the storage node will be paid by the Satellite for the data it has stored over the course of 

the month, per the Satellite’s records. 

Satellites have a strong incentive to prefer long-lived storage nodes. If storage node 

churn is too high, Satellites will escrow a portion of a storage node’s payment until the 

storage node has maintained good participation and uptime for some minimum amount 

of time, on the order of greater than half a year. If a storage node leaves the network 

prematurely, the Satellite will reclaim escrowed payments to it. 

If a storage node misses a delete command due to the node being o½ine, it will be 

storing more data than the Satellite credits it for. Storage nodes are not paid for storing 

such file pieces, but will eventually be cleaned up through the garbage collection pro- 

cess (see section 4.19). This means that storage nodes who maintain higher availability 

can maximize their profits by deleting files on request, which minimizes the amount of 

garbage data they store. 

The Satellite maintains a database of all file pieces it is responsible for and the storage 

nodes it believes are storing these pieces. Each day, the Satellite adds another day’s worth 

of accounting to each storage node for every file piece it will be storing. Satellites will 

track utilized bandwidth (see section 4.17). At the end of the month, each Satellite adds 

up all bandwidth and storage payments each storage node has earned and makes the 

payments to the appropriate storage nodes. 

Satellites will also earn revenue from account holders for executing audits, repairing 

segments, and storing metadata. Satellites charge a per-segment and per-byte cost, in ad- 

dition to charging for access and retrieval. Per-segment charges cover the cost of pointer 
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metadata, whereas per-byte charges cover the cost of data maintenance on the network. 

Every day, each Satellite will execute a number of audits across all of its storage nodes 

on the network. The Satellite will charge for both completing audits and repairs, once 

segments fall below the piece threshold needed for repair. 

When it is detected that a storage node acts maliciously and does not store files prop- 

erly or maintain su cient availability, it will not be paid for the services rendered, and the 

funds allocated to it will instead be used to repair any missing file pieces and to pay new 

storage nodes for storing the data. 

To reduce transaction fees and other overhead as much as possible, payments will be 

recipient-initiated and must be worth at least some minimum value. Certain Satellites 

may elect to use a portion of the storage nodes’ payout to cover transaction fees in part 

or in whole. 

See the Satellite reputation section (section 4.18) for details on how storage nodes will 

know to trust Satellites. 

 

 Bandwidth allocation 

A core component of our system requires knowing how much bandwidth is used between 

two peers. 

In our previous version [37, 78], we used exchange reports to gather information about 

what transpired between two peers. At the end of an operation, both peers would send 

reports to a central collection service for settlement. When both peers mutually agreed, 

it was straightforward to determine how much bandwidth had been used. When they 

disagreed, however, we resorted to data analysis and regression to determine which peer 

had a greater propensity for dishonesty in an e"ort to catch “cheaters” (or, rational nodes). 

With our new version, we want to make cheating impossible from the protocol level. 

To solve this problem, we turn to Neuman’s Proxy-based authorization and account- 

ing for distributed systems [79]. This accounting protocol more correctly measures re- 

source usage in a delegated and decentralized way. 

In Neuman’s accounting protocol, if an account holder has enough funds to cover the 

operation, an account server will create a signed, digital check and transfer it to the ac- 

count holder. The protocol refers to this check as a proxy, but we refer to it as a bandwidth 

allocation. This check contains information identifying the account server, the payer, the 

payee, the maximum amount of resources available to be used in the operation, a check 

number to prevent any double spending problems [80], and an expiration date. 

In our case, the account server is the Satellite, the payer is the Uplink, the payee is the 

storage node, and the resource in question is bandwidth. The Satellite will only create 

a bandwidth allocation if the Uplink is authorized for the request. At the beginning of a 

storage operation, the Uplink can transfer the bandwidth allocation to a storage node. The 
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storage node can validate the Satellite’s signature and perform the requested operation 

up to the allowed bandwidth limit, storing and later sending the bandwidth allocation to 

the Satellite for payment. 

We’re further inspired by FileCoin’s o"-chain retrieval market, wherein only small amounts 

of data are transferred at a time [81]. Instead of allowing the storage node to cheat and 

save the bandwidth allocation without performing the requested operation, we break 

each operation into smaller requests such that if either the storage node or Uplink stop 

participating in the protocol prematurely, neither peer class is exposed to too much loss. 

This is similar to an optimistic, gradual-release, fair-exchange protocol [80]. 

To support this with Neuman’s accounting protocol and little Satellite overhead, we 

use restricted bandwidth allocations (referred to as restricted proxies in [79]). Neuman’s 

restricted proxies work much like Macaroons [68] in which further caveats can be added 

in a way that can’t be removed, limiting the capabilities of the proxy. Proxies can use 

public/private key cryptography, which means that anyone can validate the proxy, instead 

of just the original issuer. Because each Uplink already has a key pair as part of its identity 

(section 4.4), we use the existing key pair instead of creating a new key pair for every 

restriction. 

Restricted bandwidth allocations, in our case, are restricted by the Uplink to limit the 

bandwidth allocation’s value to only what has transferred so far. In this way, the storage 

node will only keep the largest bandwidth allocation it has received up to that point, and 

the Uplink will only send bandwidth allocations that are slightly larger than what it has 

received. The storage node has no incentive to keep more than the largest allocation, as 

they all share the same “check number,” which can only be cashed once. 

In the case of a Get operation, assume the Satellite-signed bandwidth allocation allows 

up to x bytes total. The Uplink will start by sending a restricted allocation for some small 

amount (y bytes), perhaps only a few kilobytes, so the storage node can verify the Uplink’s 

authorization. If the allocation is signed correctly, the storage node will transfer up to the 

amount listed in the restricted allocation (y bytes) before awaiting another allocation. The 

Uplink will then send another allocation where y is larger, continuing to send allocations 

for data until y has grown to the full x value. For each transaction, the storage node only 

sends previously-unsent data, so that the storage node only sends x bytes total. As seen 

in Figure 4.6, we pipeline these requests to avoid pipeline stall performance penalties. 

If the request is terminated at any time, either planned or unexpectedly, the storage 

node will keep the largest restricted bandwidth allocation it has received. This largest 

restricted bandwidth allocation is the signed confirmation by the Uplink that the Uplink 

agreed to bandwidth usage of up to y bytes, along with the Satellite’s confirmation of 

the Uplink’s bandwidth allowance x. The storage node will periodically send the largest 

restricted bandwidth allocations it has received to appropriate Satellites, at which point 

Satellites will pay the storage node for that bandwidth. 

If the Uplink can’t a"ord the bandwidth usage, the Satellite will not sign an bandwidth 

allocation, protecting the Satellite’s reputation. Likewise, if the Uplink tries to use more 
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Figure 4.5: Diagram of a put operation 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.6: Diagram of a get operation 
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bandwidth than allocated, the storage node will decline the request. The storage node 

can only get paid for the maximum amount a client has agreed to, as it otherwise has no 

valid bandwidth allocations to return for payment. 

As before, we don’t measure all peer-to-peer tra c. This bandwidth tra c measure- 

ment system only tracks bandwidth used during storage operations (storage and retrievals 

of pieces). However, it does not apply to node discovery tra c (Kademlia DHT) or other 

generic maintenance overhead. 

 
 

 Satellite reputation 

Whenever a Satellite on the Daatty Cloud Coin network has a less than stellar 

payment, demand gen- eration, or performance history, there is a strong incentive for 

the storage nodes to avoid accepting its data. 

When a new Satellite joins the network, the participating storage nodes will com- 

mence their own vetting process. This process limits their exposure to the new and un- 

known Satellite, while building trust over time to highlight which of the Satellites have 

the best payment record. Storage nodes will be able to configure the maximum amount 

of data they will store for an untrusted Satellite, and will build historical data on whether 

that Satellite will be trusted further in the future. Storage node operators will also retain 

manual control on what Satellites they will trust, or won’t trust, if desired. 

Storage node operators can elect to automatically trust a Daatty Cloud Coin Labs 

provided collec- tion of recommended Satellites that adhere to a strict set of quality 

controls and payment service level agreements (SLAs). To protect storage node 

operators, if a Satellite operator wants to be included in the “Tardigrade” approved list, 

the Satellite operator may be re- quired to adhere to a set of operating, payment, and 

pricing parameters and to sign a business arrangement with Daatty Cloud Coin 

Labs. See section 4.21 for more details. 

 
 

 Garbage collection 

When clients move, replace, or delete data, Satellites, or clients on behalf of Satellites, will 

notify storage nodes that they are no longer required to store that data. In configurations 

where delete messages are issued by the client, the metadata system (and thus a Satel- 

lite, with Satellite reputation on the line) will require proof that deletes were issued to 

a configurable minimum number of storage nodes. This means that every time data is 

deleted, storage nodes that are online and reachable will receive notifications right away. 

Storage nodes will sometimes be temporarily unavailable and will miss delete mes- 

sages. In these cases, unneeded data is considered garbage. Satellites only pay for data 

that they expect to be stored. Storage nodes with lots of garbage will earn less than they 
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otherwise would unless a garbage collection system is employed. For this reason, we 

introduce garbage collection to free up space on storage nodes. 

A garbage collection algorithm is a method for freeing no-longer used resources. A 

precise garbage collector collects all garbage exactly and leaves no additional garbage. 

A conservative garbage collector, on the other hand, may leave some small proportion 

of garbage around given some other trade-o"s, often with the aim of improving perfor- 

mance. As long as a conservative garbage collector is used in our system, the payment for 

storage owed to a storage node will be high enough to amortize the cost of storing the 

garbage. 

For the nodes that miss initial delete messages, our first release will start with a con- 

servative garbage collection strategy, though we anticipate a precise strategy in the near 

future. Periodically, storage nodes will request a data structure to detect di"erences. In 

the simplest form, it can be a hash of stored keys, which allows e cient detection of out- 

of-sync state. After detecting out-of-sync state, collection can use another structure, such 

as a Bloom filter [82], to find out what data has not been deleted. By returning a data 

structure tailored to each node on a periodic schedule, a Satellite can give a storage node 

the ability to clean up garbage data to a configurable tolerance. Satellites will reject overly 

frequent requests for these data structures. 

 
 

 Uplink 

Uplink is the term which we use to identify any software or service that invokes libuplink 

in order to interact with Satellites and storage nodes. It comes in a few forms: 

Libuplink - libuplink is a library that provides access to storing and retrieving data in the 

Daatty Cloud Coin network. 

Gateways - Gateways act as compatibility layers between a service or application and 

the Daatty Cloud Coin network. They run as a service co-located with wherever data 

is generated, and will communicate directly with storage nodes so as to avoid 

central bandwidth costs. The Gateway is a simple service layer on top of libuplink. 

Our first gateway is an Amazon S3 gateway. It provides an S3-compatible, drop-in 

interface for users and applications that need to store data but don’t want to bother 

with the complexities of distributed storage directly. 

Uplink CLI  - The Uplink CLI is a command line application which invokes libuplink, al- 

lowing its user to upload and download files, create and remove buckets, manage 

file permissions, and other related tasks. It aims to provide an experience familiar to 

what you might expect when using Linux/UNIX tools such as scp or rsync. 

Like storage nodes and Satellites, the Uplink software in all three forms is being devel- 

oped and will be released as open source software. 
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 Quality control and branding 

The Daatty Cloud Coin Network has two major product focuses that serve two distinct 

target markets. These focal points are: 

1. creating storage supply for the network via recruiting storage node operators and 

2. creating demand for Cloud storage with paying users. 

Daatty Cloud Coin will di"erentiate these focuses and the experience design for 

each market seg- ment by separating the supply side of our business from the 

demand side through two brands, Daatty Cloud Coin and Tardigrade. 

The supply side of the market will be served by the Daatty Cloud Coin brand. We will 

retain Daatty Cloud Coin.io as the place for learning how to contribute extra storage and 

bandwidth to the Daatty Cloud Coin Network. This includes storage node setup, 

documentation, frequently asked questions (FAQs), and tutorials. Users of both brands 

will also be able to access our source code and community through Daatty Cloud 

Coin.io. 

The demand side of our business will be served by the Tardigrade brand and will be 

directed through tardigrade.io. This experience will be focused toward our partners and 

customers who purchased decentralized storage and bandwidth from the network with 

the expectation of high durability, resilience, and reliability, backed by an industry-leading 

service level agreement (SLA). This includes any o"ers, free trials, Satellite selection, docu- 

mentation, FAQs, tutorials, and so forth. 

The “Tardigrade” brand will additionally serve as a Satellite quality credentialing sys- 

tem. Anyone can set up a Satellite via Daatty Cloud Coin.io, but to have a Satellite 

listed as an o cial Tardigrade Satellite, be considered “Tardigrade quality,” and benefit 

directly from Daatty Cloud Coin Labs’ demand generation activities, an operator must 

pass certain compliance and qual- ity requirements. These quality controls will 

continuously audit and rank Satellites on their behavior, durability, compliance, and 

performance. In addition, the Satellite operator will have to adhere to particular 

business policies around pricing, storage node recruitment, SLAs, storage node 

payments, and so forth. 

Satellite operators in the Tardigrade network will have a business relationship with 

Daatty Cloud Coin Labs that defines, among other things, franchise fees and revenue 

sharing between the entities. Daatty Cloud Coin Labs will also assume responsibilities 

including demand generation, brand enforcement, Satellite operator support, end user 

support, United States Form 1099 tax filing compliance,4 insurance, and maintenance 

of overall network quality. 

These compliance and quality controls will be implemented to ensure that storage 

nodes are paid fairly and Satellites are able to continuously meet all SLAs of the Tardigrade 

products. 

 

 

 
4US Form 1099 is required by law for any payments to an individual in a given year exceeding a total of $600. 



 

 

 

 

5. Walkthroughs 

 
The following is a collection of common use case examples of di"erent types of transac- 

tions of data through the system. 

 
 

 Upload 

When a user wants to upload a file, the user first begins transferring data to an instance 

of the Uplink. 

• The Uplink chooses an encryption key and starting nonce for the first segment and 

begins encrypting incoming data with authenticated encryption as it flows to the 

network. 

• The Uplink bu"ers data until it knows whether the incoming segment is short enough 

to be an inline segment or a remote segment. Inline segments are small enough to 

be stored on the Satellite itself. 

The rest of this walkthrough will assume a remote segment because remote segments 

involve the full technology stack. 

• The Uplink sends a request to the Satellite to prepare for the storage of this first seg- 

ment. The request object contains API credentials, such as macaroons, and identity 

certificates. 

Upon receiving the request, the Satellite will: 

• Confirm that the Uplink has appropriate authorization and funds for the request. 

The Uplink must have an account with this specific Satellite already. 

• Make a selection of nodes with adequate resources that conform to the bucket’s 

configured durability, performance, geographic, and reputation requirements. 

• Return a list of nodes, along with their contact information and unrestricted band- 

width allocations, and a chosen root piece ID. 

Next, the Uplink will take this information and begin parallel connections to all of the 

chosen storage nodes while measuring bandwidth (section 4.17). 

• The Uplink will begin breaking the segment into stripes and then erasure encode 

each stripe. 

• The generated erasure shares will be concatenated into pieces as they transfer to 

each storage node in parallel. 

• The erasure encoding will be configured to over-encode to more pieces than needed. 

This will eliminate the long tail e"ect and lead to a significant improvement of visible 

performance by allowing the Uplink to cancel the slowest uploads. 
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• The data will continue to transfer until the maximum segment size is hit or the 

stream ends, whichever is sooner. 

• All of the hashes of every piece will be written to the end of each piece stream. 

After that, the storage node will store: the largest restricted bandwidth allocation; the 

TTL of the segment, if one exists; and the data itself. The data will be identified by the 

storage node-specific piece ID and the delegating Satellite ID. 

If the upload is aborted for any reason, the storage node will keep the largest restricted 

bandwidth allocation it received from the client Uplink on behalf of the Satellite, but will 

throw away all other relevant request data. 

Assuming success: 

• The Uplink encrypts the random encryption key it chose for this file, utilizing a de- 

terministic hierarchical key. 

• The Uplink will upload a pointer object back to the Satellite, which contains the 

following information: 

– which storage nodes were ultimately successful 

– what encrypted path was chosen for this segment 

– which erasure code algorithm was used 

– the chosen piece ID 

– the encrypted encryption key and other metadata 

– the hash of the piece hashes 

– a signature 

Finally, the Uplink will then proceed with the next segment, continuing to process 

segments until the entire stream has completed. Each segment gets a new encryption 

key, but the segment’s starting nonce monotonically increases from the previous segment. 

The last segment stored in the stream will contain additional metadata: 

• how many segments the stream contained 

• how large the segments are, in bytes 

• the starting nonce of the first segment 

• extended attributes and other metadata 

Periodically, the storage nodes will later send the largest restricted bandwidth alloca- 

tion they received as part of the upload to the appropriate Satellite for payment. 

If an upload happens via the Amazon S3 multipart-upload interface, each part is up- 

loaded as a segment individually. 
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 Download 

When a user wants to download a file, first the user sends a request for data to the Uplink. 

The Uplink then tries to reduce the number of round trips to the Satellite by speculatively 

requesting the pointers for the first few segments in addition to the pointer for the last 

segment. The Uplink needs the last segment pointer to learn the size of the object, the 

size and number of segments, and how to decrypt the data. In a future release, the Uplink 

may just tell the Satellite which byte ranges are needed and the Satellite can respond with 

the appropriate segment pointers. 

For every segment pointer requested, the Satellite will: 

• Validate that the Uplink has access to download the segment pointer and has 

enough funds to pay for the download. 

• Generate an unrestricted bandwidth allocation for each piece that makes up the 

segment. 

• Look up the contact information for the storage nodes listed in the pointer. 

• Return the requested segment pointer, the bandwidth allocations, and node contact 

info for each piece. 

The Uplink will determine whether more segments are necessary for the data request 

it received, and will request the remaining segment pointers if needed. 

• Once all necessary segment pointers have been returned, if the requested segments 

are not inline, the Uplink will initiate parallel requests while measuring bandwidth 

(section 4.17) to all appropriate storage nodes for the appropriate erasure share 

ranges inside of each stored piece. 

• Because not all erasure shares are necessary for recovery, long tails will be eliminated 

and a significant and visible performance improvement will be gained by allowing 

the Uplink to cancel the slowest downloads. 

• The Uplink will combine the retrieved erasure shares into stripes and decrypt the 

data. 

If the download is aborted for any reason, each storage node will keep the largest re- 

stricted bandwidth allocation it received, but it will throw away all other relevant request 

data. Either way, the storage nodes will later send the largest restricted bandwidth alloca- 

tion they received as part of the download to the appropriate Satellite for later payment. 

 
 

 Delete 

When a user wants to delete a file, the delete operation is first received by the Uplink. The 

Uplink then requests all of the segment pointers for the file. 

For every segment pointer, the Satellite will: 
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• Validate that the Uplink has access to delete the segment pointer. 

• Generate a signed agreement for the deletion of the segment, so the storage node 

knows the Satellite is expecting the delete to proceed. 

• Look up the contact information for the storage nodes listed in the pointer. 

• Return the segments, the agreements, and contact information. 

For all of the remote segments, the Uplink will initiate parallel requests to all appro- 

priate storage nodes to signal that the pieces are being removed. 

• The storage nodes will return a signed message indicating either that the storage 

node received the delete operation and will delete both the file and its bookkeeping 

information or that it was already removed. 

• The Uplink will upload all of the signed messages that it received from working stor- 

age nodes back to the Satellite. The Satellite will require an adjustable percent of 

the total storage nodes to successfully sign messages to ensure that the Uplink did 

its part in notifying the storage nodes that the object was deleted. 

• The Satellite will remove the segment pointers and stop charging the customer and 

stop paying the storage nodes for them. 

• The Uplink will return a success status. 

Periodically, storage nodes will ask the Satellite for generated garbage collection mes- 

sages that will update storage nodes who were o½ine during the main deletion event. 

Satellites will reject requests for garbage collection messages that happen too frequently. 

See section 4.19 for more details. 

 
 

 Move 

When a user wants to move a file, first, the Uplink receives a request for moving the file 

to a new path. Then, the Uplink requests all of the segment pointers of that file. 

For every segment pointer, the Satellite: 

• Validates that the Uplink has access to download it. 

• Returns the requested segment metadata. 

For every segment pointer, the Uplink: 

• Decrypts the metadata with an encryption key derived from the path. 

• Calculates the path at the new destination. 

• Re-encrypts the metadata with a new encryption key derived from the new path. 

The Uplink requests that the Satellite add all modified segment pointers and remove 

all old segment pointers in an atomic compare-and-swap operation. 

The Satellite will validate that: 
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• The Uplink has appropriate authorization to remove the old path and create the new 

path. 

• The content of the old path hasn’t changed since the overall operation started. 

If the validation is successful, the Satellite will perform the operation. No storage node 

will receive any request related to the file move. 

Because of the complexity around atomic pointer batch modifications, e cient move 

operations may not be implemented in the first release of this network. 

 
 

 Copy 

When a user wants to copy a file, first, the Uplink receives a request for copying a file to a 

new path. Then the Uplink requests all of the segment pointers of the file. 

For every segment pointer, the Satellite: 

• Validates that the Uplink has access to download it. 

• Looks up the contact information for the storage nodes listed in the pointer. 

• Returns the requested segment metadata, a new root piece ID, and contact infor- 

mation. 

For every segment pointer, the Uplink: 

• Decrypts the metadata with an encryption key derived from the path. 

• Changes the path to the new destination. 

• Invokes a copy operation on each of the storage nodes from the pointer to duplicate 

the piece with a new piece ID. 

• Waits for the storage nodes to respond that they have duplicated the data and it 

removes nodes that were unsuccessful. 

• Re-encrypts the metadata with the new piece ID and a new encryption key derived 

from the new path. 

Finally, the Uplink uploads all modified segment pointers to the Satellite. 

Importantly, it is okay if the storage nodes de-duplicate storage, or only store one actual 

copy of the data. All that matters is that the storage node can identify the data by both 

the old and new piece ID. If one of the piece IDs receives a delete operation, the other 

piece ID will continue working. Only after both pieces are deleted will the node free the 

space. 

 
 

 List 

When a user wants to list files: 
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• First, a request for listing a page of objects is received by the Uplink. 

• Then, the Uplink will translate the request on unencrypted paths to encrypted paths. 

• Next, the Uplink will request from the Satellite the appropriate page of encrypted 

paths. 

• After that, the Satellite will validate that the Uplink has appropriate access and then 

return the requested list page. 

• Finally, the Uplink will decrypt the results and return them. 

 
 

 Audit 

Each Satellite has a queue of segment stripes that will be audited across a set of storage 

nodes. The queue is filled via two mechanisms. 

• In the first mechanism, the Satellite populates the queue periodically by selecting 

segments randomly, and then stripes within those segments also at random. Be- 

cause segments have a maximum size, this su ciently approximates our goal of 

choosing a byte to audit uniformly at random. 

• In the second mechanism, the Satellite chooses a stripe to audit by identifying stor- 

age nodes that have had fewer recent audits than other storage nodes. The Satellite 

will select a stripe at random from the data contained by that storage node. 

Satellites will then work to process the queue and report errors. 

• For each stripe request, the Satellite will perform the entire download operation for 

that small stripe range, filtering out nodes that are in containment mode. Unlike 

standard downloads, the stripe request does not need to be performant. The Satel- 

lite will attempt to download all of the erasure shares for the stripe and will wait for 

slow storage nodes. 

• After receiving as many shares as possible within a generous timeout, the erasure 

shares will be analyzed to discover which, if any, are wrong. Satellites will take note 

of storage nodes that return invalid data, and if a storage node returns too much 

invalid data, the Satellite will disqualify the storage node from future exchanges. 

In the case of a disqualification, the Satellite will not pay the storage node going 

forward, and it will not select the storage node for new data. 

• For storage nodes that did not respond, a cryptographic checksum of the expected 

audit result will be created and stored, placing the unresponsive nodes in contain- 

ment. While in containment, a node will continue to be given only the audit it was 

unresponsive for until it passes or is disqualified. 

 
 

 Data repair 

The repair process has two parts. The first part detects unhealthy files, and the second 

part repairs them. Detection is straightforward. 
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• Each Satellite will periodically ping every storage node it knows about, either as part 

of the audit process or via standard node discovery ping operations. 

• The Satellite will keep track of nodes that fail to respond and mark them as down. 

• When a node is marked down or is marked bad via the audit process, the pointers 

that point to that storage node will be considered for repair. Pointers keep track of 

their minimum allowable redundancy. If a pointer is not stored on enough good, 

online storage nodes, it will be added to the repair queue. 

A worker process will take segment pointers o" the repair queue. When a segment 

pointer is taken o" the repair queue: 

• The worker will download enough pieces to reconstruct the entire segment, along 

with the piece hashes stored with those pieces (see section 4.14.1). Unlike audits, 

only enough pieces for accurate repair are needed. Unlike streaming downloads, 

the repair system can wait for the entire segment before starting. 

• The piece hashes are validated against the signature in the pointer, and then the 

downloaded pieces are validated against the validated piece hashes. Incorrect 

pieces are thrown away and count against the source as failed audits. 

• Once enough correct pieces are recovered, the missing pieces are regenerated. 

• The Satellite selects some new nodes and uploads the new pieces to those new 

nodes via the normal upload process. 

• The Satellite updates the pointer’s metadata. 

 
 

 Payment 

The payment process works as follows: 

• First, the Satellite will choose a rollup period. This is a period of time—defaulting to 

a day—that payment for data at rest is calculated. This is purely a period chosen for 

accounting; actual payments will happen on a less frequent schedule. 

• During each roll-up period, a Satellite will consider all of the files it believes are cur- 

rently stored on each storage node. Satellites will keep track of payments owed to 

each storage node for each rollup period, based on the data kept on each storage 

node. 

• Finally, storage nodes will periodically—defaulting to monthly—send in bandwidth 

allocation reports. When a Satellite receives a bandwidth allocation report, it calcu- 

lates the owed funds along with the outstanding data at rest calculations. It then 

sends the funds to the storage node’s requested wallet address. 



 

 

 

 

6. Future work 

 
Daatty Cloud Coin is a work in progress, and many features are planned for future 

versions. In this chapter, we discuss a few especially interesting areas in which we 

want to consider im- provements to our concrete implementation. 

 
 

 Hot files and content delivery 

Occasionally, users of our system may end up delivering files that are more popular than 

anticipated. While storage node operators might welcome the opportunity to be paid for 

more bandwidth usage for the data they already have, demand for these popular files 

might outstrip available bandwidth capacity, and a form of dynamic scaling is needed. 

Fortunately, Satellites already authorize all accesses to pieces, and can therefore meter 

and rate limit access to popular files. If a file’s demand starts to grow more than current 

resources can serve, the Satellite has an opportunity to temporarily pause accesses if nec- 

essary, increase the redundancy of the file over more storage nodes, and then continue 

allowing access. 

Reed-Solomon erasure coding has a very useful property. Assume a (k, n) encoding, 

where any k pieces are needed of n total. For any non-negative integer number x, the first 

n pieces of a (k, n + x) encoding are the exact same pieces as a (k, n) encoding. This means 

that redundancy can easily be scaled with little overhead. 

As a practical example, suppose a file was encoded via a (k = 20, n = 40) scheme, and 

a Satellite discovers that it needs to double bandwidth resources to meet demand. The 

Satellite can download any 20 pieces of the 40, generate just the last 40 pieces of a new 

(k = 20, n = 80) scheme, store the new pieces on 40 new nodes, and—without changing 

any data on the original 40 nodes—store the file as a (k = 20, n = 80) scheme, where any 

20 out of 80 pieces are needed. This allows all requests to adequately load balance across 

the 80 pieces. If demand outstrips supply again, only 20 pieces are needed to generate 

even more redundancy. In this manner, a Satellite could temporarily increase redundancy 

to (20, 250), where requests are load balanced across 250 nodes, such that every piece of 

all 250 are unique, and any 20 of those pieces are all that is required to regenerate the 

original file. 

On one hand, the Satellite will need to pay storage nodes for the increased redundancy, 

so content delivery in this manner has increased at-rest costs during high demand, in 

addition to bandwidth costs. On the other hand, content delivery is often desired to be 

highly geographically redundant, which this scheme provides naturally. 
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 Improving user experience around metadata 

In our initial concrete implementation, we place significant burdens on the Satellite op- 

erator to maintain a good service level with high availability, high durability, regular pay- 

ments, and regular backups. We expect a large degree of variation in quality of Satellites, 

which led us to implement our quality control program (see section 4.21). 

Over time, clients of Satellites will want to reduce their dependence on Satellite op- 

erators and enjoy more e cient data portability between Satellites besides downloading 

and uploading their data manually. We plan to spend significant time on improving this 

user experience in a number of ways. 

In the short term, we plan to build a metadata import/export system, so users can make 

backups of their metadata on their own and transfer their metadata between Satellites. 

In the medium term, we plan to reduce the size of these exports considerably and 

make as much of this backup process as automatic and seamless as possible. We expect 

to build a system to periodically back up the major portion of the metadata directly to 

the network. 

In the long term, we plan to architect the Satellite out of the platform. We hope to 

eliminate Satellite control of the metadata entirely via a viable Byzantine-fault tolerant 

consensus algorithm, should one arise. The biggest challenge to this is finding the right 

balance between coordination avoidance and Byzantine fault tolerant consensus, where 

storage nodes can interact with one another and share encoded pieces of files while 

still operating within the performance levels users will expect from a platform that is 

competing with traditional Cloud storage providers. Our team will continue to 

research viable means to achieve this end. 

See section 2.10 and appendix A for discussions on why we aren’t tackling the Byzan- 

tine fault tolerant consensus problem right away. 



 

 

 

 

7. Selected calculations 

 

 Object repair costs 

A fundamental challenge in our system is how to not only choose the system parameters 

that keep the expansion factor and repair bandwidth to a minimum but also provide an 

acceptable level of durability. 

Fortunately, we are not alone in wondering about this, and there is a good amount of 

prior research on the problem. “Peer-to-Peer Storage Systems: a Practical Guideline to be 

Lazy” [36] is an excellent guide, and much of our work follows from their conclusions. The 

end result is a mathematical framework which determines network durability and repair 

bandwidth given Reed-Solomon parameters, average node lifetime, and reconstruction 

rate. 

The following is a summary of results and explanation of their implications. 

 
Variable Description 

MTTF 

α 

MRT 

γ 

D 

n 

k 

m 

LR 

1-LR 

ED 

BR 

BWR 

Mean time to failure 

1/MTTF 

Mean reconstruction time 

1/MRT 

Total bytes on the network 

Total number of pieces per segment (RS encoding) 

Pieces needed to rebuild a segment (RS encoding) 

Repair threshold 

Loss rate 

Durability 

Expansion factor 

Ratio of data that is repair bandwidth 

Total repair bandwidth in the network 

 

LR = 
  1 m!   

. 
α 
Σm–k+2 

(m + 1) ln(n/m) (k – 1)! γ 

ED  = n/k 

α(n – m + k) 

k ln(n/m) 

BWR = D · BR 

 
 

The equations demonstrate that repair bandwidth is impacted by node churn linearly, 

which is expected. Lower mean time to node failure triggers more frequent rebuilds and, 

BR = 
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therefore, more bandwidth usage. Loss rate is much more sensitive to high node churn, 

as it increases exponentially with α. This necessitates very stable nodes, with lifetimes 

of several months, to achieve acceptable network durability. See section 7.3 for a more 

in-depth discussion of how node churn a"ects erasure code parameters. 

 
 Bandwidth limits usable space 

Repair a"ects storage nodes’ participation beyond their bandwidth usage; it also con- 

strains the amount of usable disk space. Consider a storage node with 1 TB of available 

space, with a stated monthly bandwidth limit of 500 GB. If it’s known (via the above 

framework) that a storage node can expect to repair 50% of its data in a given month, 

and assuming each stored object is served at least once, then we can store no more than 

333 GB on this node since anything more than that causes more bandwidth than allowed. 

In other words, paid bandwidth plus repair bandwidth must always be less than or equal 

to the bandwidth limit. 

Higher repair rates equal lower e"ective storage size, but nodes serving paid data more 

frequently are more sensitive to this e"ect. In practice, the paid bandwidth rate will vary 

with the type of data being stored on each node. These ratios must be monitored closely 

to determine appropriate usable space limits as the network evolves over time. 
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 Audit false positive risk 

We rely on a Bayesian approach to determine the probability that a storage node is main- 

taining stored pieces faithfully. At a high level, we seek to answer the following question: 

how do consecutive successful audits change our estimate of the probability that a node 

will continue to return successful audits? 

We model the audit process as being a binomial random variable with an unknown 

probability of success p ∈ [0, 1], with each audit being an independent Bernoulli trial. It is 

well-known that the conjugate prior of the binomial distribution is the beta distribution 

β(a, b), and that the posterior also follows the beta distribution. As in [83], we use the mean 

of the posterior distribution as our Bayes estimator, which is given by P = (a + x)/(a + b + n) 

where a, b are the parameters of the prior distribution, and x is the number of successes 

observed in n audits. Under our assumption that each audit is successful, we arrive at the 

Bayes estimate of the success probability P = (a + n)/(a + b + n). 
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Figure 7.1: In Jeffrey’s prior, we see the estimate for audit success probability is heavily 

weighted to be near 0 or near 1. 
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Figure 7.2: Using a Uniform prior, there is no assumption placed on the estimated 

audit success probability, and all probabilities are assumed to be equally likely.  

We now choose a prior to derive a numerical estimate of the audit success probability 

based on the number of audits performed. There are many reasonable choices of Bayesian 

priors, but we restrict our attention to two popular choices: the Uniform prior and Je"rey’s 
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prior [84]. Using the Uniform prior β(1, 1) initializes the experiment by assigning an equal 

probability to all possible outcomes; that is, the probability of success is drawn from the 

uniform distribution on (0, 1). Under Je"rey’s prior β(0.5, 0.5), it is assumed that the proba- 

bility of success falls towards either extreme, so that a node will return a successful audit 

either with probability near 0 or with probability near 1. 

 

Number of 

audits 

Audit success estimate given 

uniform prior 

Audit success estimate given 

Je"rey’s prior 

0 0.5 0.5 

20 0.9545 0.9762 

40 0.9762 0.9878 

80 0.9878 0.9938 

200 0.99505 0.99751 

Table 7.1: Estimate of audit success probability by number of audits, each assumed to 

be successful. We find that the estimated probability of success begins at 0.5 when 

there is no information known about the node (no audits have been performed), with 

the estimate quickly jumping to above 99% in as few as 80 audits using Jeffrey’s prior. 

 

In Table 7.1, we present results obtained from using both priors. We remark that the 

well-established Bayesian approach allows us to rapidly gain more confidence in a node’s 

ability to return a successful audit, given that the success probability estimate tends closer 

to 1 with each consecutive audit success. 
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a ln(1–p/a) 

 

 Choosing erasure parameters 

In the context of storing an erasure-coded segment on a decentralized network, we con- 

sider the loss of a piece from two di"erent perspectives. 

 
 Direct piece loss 

With direct piece loss, we assume that for a specific segment, its erasure pieces are lost 

according to a certain rate. We point out that modeling this is straightforward: if pieces are 

lost at a rate 0 < p < 1 and we start with n pieces, then piece decay follows an exponential 

decay pattern of the form n(1 – p)t , with t being the time elapsed according to the units 

used for the rate.1 To account for a multiple checks per month, we may extend this to 

n(1 – p/a)at .  If m is the rebuild threshold which controls when a segment is rebuilt, we 

may solve n(1 – p/a)at = m for t (taking the ceiling when necessary) to determine how long 

it will take for the n pieces of a segment to decay to less than m pieces. This works out to 

the smallest t for which t >    ln(m/n)   . Thus it becomes clear, given parameters n, m, a and 

p, how long we expect a segment to last between repairs. 

 
 Indirect piece loss 

When modeling indirect piece loss, we suppose that a fixed rate of nodes drop out of 

the network each month,2 whether or not they are holding pieces of the segment under 

consideration. To describe the probability that d of the dropped nodes were each storing 

one of the n pieces of a specific segment, we turn to the hypergeometric probability 

distribution. Suppose c nodes are replaced per month out of C total nodes on the network. 

Then the probability that d nodes were each storing a piece of the segment is given by 

P(X = d) = 

.nΣ.C–nΣ

 
 

 

 (7.1) 

d   c–d 
.CΣ 

 

which has mean nc/C. We then determine how long it will take for the number of pieces 

to fall below the desired threshold m by iterating, holding the overall churn c fixed but 

reducing the number of existing pieces by the distribution’s mean in each iteration and 

counting the number of iterations required. For example, after one iteration, the number 

of existing pieces is reduced by nc/C, so instead of n pieces on the network (as the pa- 

rameter in (7.1)), there are n – nc/C pieces, changing both the parameter and the mean for 

(7.1) in iteration 2. 

We may extend this model by considering multiple checks per month (as in the di- 

rect piece loss case), assuming that c/a nodes are lost every 1/a-th of a month instead of 

assuming that c nodes are lost per month, where a is the number of checks per month. 

This yields an initial hypergeometric probability distribution with mean nc/aC. 
1So if we assume a proportion of p = 0.1 pieces are lost per month, t is given in months. 
2Though the rate may be taken over any desired time interval. 

c 
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In either of these two cases (single or multiple segment integrity checks per month), 

we track the number of iterations until the number of available pieces fall below the repair 

threshold. This number may then be used to determine the expected number of rebuilds 

per month for any given segment. 

 
 Numerical simulations for indirect piece loss 

We produce decision tables (Table 7.2) showcasing worst-case mean segment rebuild out- 

comes based on simulating piece loss for segments encoded with varying Reed-Solomon 

parameters. We assume a (k, n) RS encoding scheme, where n pieces are generated, with 

k pieces needed for reconstruction, using three di"erent values for n.  We also assume 

that a segment undergoes the process of repair when less than m pieces remain on the 

network, using three di"erent values of m for each n. For the initial table, we use a sim- 

plifying assumption that pieces on the network are lost at a constant rate per month,3 

which may be due to node churn, data corruption, or other problems. 

To arrive at the value for mean rebuilds per month, we consider a single segment 

that is encoded with n pieces which are distributed uniformly randomly to nodes on 

the network. To simulate conditions leading to a rebuild, we uniformly randomly select 

a subset of nodes from the total population and designate them as failed. We do this 

multiple times per (simulated) month, scaling the piece loss rate linearly according to the 

number of segment integrity checks per month.4 

Once enough nodes have failed to bring the number of pieces above the repair thresh- 

old m, the segment is rebuilt, and we track the number of rebuilds over the course of 24 

months. We repeat this simulation for 1000 iterations, simulating 1000 two-year periods 

for a single segment. We then take the number of rebuilds at the 99th percentile (or 

higher) of the number of rebuilds occurring over these 1000 iterations. In other words, 

we choose the value for which the value of the observed cumulative distribution func- 

tion (CDF), describing the number of rebuilds over this two-year period, is at least 0.99. 

This value is then divided by the number of months to arrive at the mean rebuilds/month 

value. An example of the approach is shown in Figure 7.3. We perform the experiment 

on a network of 10,000 nodes, observing that the network size will not directly impact 

the mean rebuilds/month value for a single segment under our working assumption of a 

constant rate of loss per month.5 

In forming the decision tables, we consider as part of our calculations how di"erent 

choices of k, n, m, and mean time to failure a"ect durability and repair bandwidth. What 
3This constant rate may be viewed as the mean of the Poisson distribution modeling piece loss per month. 
4 For example, if the monthly network piece loss rate is assumed to be 0.1 of the network size (or 10%), and 

if 10 segment integrity checks are performed per month, we assume that, on average, 1% of pieces are lost 

between checks. 
5We represent piece loss as a proportion of nodes selected uniformly randomly from the total network. The 

proportion scales directly with network size, so the overall number of pieces lost stays the same for networks of 

di"erent sizes. 
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Figure 7.3: Left: Density for the number of rebuilds over a 24 month period, repeated 

for 1000 iterations. Right: CDF of the number of rebuilds. In this case, the mean 

rebuilds/month value would be taken as 26/24 ≈ 1.083, with there being a 99.7% 

chance that a segment is rebuilt at most 26 times over the course of 24 months.  

 
we are looking for is the lowest repair bandwidth that also meets our durability require- 

ments. 
 

MTTF (months) k n m Repair Bandwidth Ratio Durability (# nines) 

1 20 40 35 9.36 0.9999 (8) 

6 20 40 30 0.87 0.9999 (17) 

12 20 40 25 0.31 0.9999 (13) 

1 30 60 35 3.40 0.9999 (4) 

6 30 70 40 0.60 0.9999 (15) 

12 30 80 45 0.31 0.9999 (25) 

1 40 80 60 5.21 0.9999 (4) 

6 40 120 50 0.52 0.9999(14) 

12 40 120 45 0.24 0.9999 (11) 

Table 7.2: Decision tables showing the relationship between churn (MTTF), 

Reed-Solomon parameters (k, n, m), repair bandwidth ratio, and durability  

 
 

 Conclusion 

We conclude by observing that these models may be tuned to target specific network 

scenarios and requirements. One network may require one set of Reed-Solomon param- 

eters, while a di"erent network may require another. In general, the closer m/n is to 1, 

the more rebuilds per month should be expected under a fixed churn rate. While hav- 

ing a larger ratio for m/n increases file durability for any given churn rate, it comes at the 

expense of more bandwidth used since repairs are triggered more often. To maintain a 

low mean rebuilds/month value while also maintaining a higher file durability, the aim 

should be to increase the value of n as much as feasible given other network conditions 

(latency, download speed, etc.), which allows for a lower relative value of m while still not 

jeopardizing file durability. 
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Informally, it takes longer to lose more pieces under a given fixed network size and 

churn rate. Therefore, to maximize durability while minimizing repair bandwidth usage, 

n should be as large as existing network conditions allow. This allows for a value of m that 

is relatively closer to k, reducing the mean rebuilds/month value, which in turn lowers the 

amount of repair bandwidth used. 

For example, assume we have a network with a mean time to failure of six months. 

Suppose we consider the same file encoded with two di"erent RS parameters: one under 

a (20, 40) schema and the other as an (30, 80) schema. If we set m so that m = k + 10 for 

both cases, we observe from the above table that the bandwidth repair ratio is 0.87 in 

the (20, 40) case and is 0.60 in the (40, 80) case. Both encoding schemes have similar 

durability, as a repair in both cases is triggered when there are k + 10 pieces left; even 

though the mean of rebuilds per month is empirically and theoretically lower for the 

(40, 80) case using m = k + 10. 



 

 

 

 

A. Distributed consensus 

 
To explain why we are not trying to solve Byzantine distributed consensus, it’s worth a 

brief discussion of the history of distributed consensus. 

 
 

 Non-Byzantine distributed consensus 

Computerized data storage systems began by necessity with single computers storing 

and retrieving data on their own. Unfortunately, in environments where the system must 

continue operating at all times, a single computer failure can grind an important process 

to a halt. As a result, researchers have often sought ways to enable groups of computers 

to manage data without any specific computer being required for operation. Spreading 

ownership of data across multiple computers could increase uptime in the face of failures, 

increase throughput by spreading work across more processors, and so forth. This research 

field has been long and challenging; but, fortunately, it has led to some really exciting 

technology. 

The biggest issue with getting a group of computers to agree is that messages can 

be lost. How this impacts decision making is succinctly described by the “Two Generals’ 

Problem” [85],1 in which two armies try to communicate in the face of potentially lost 

messages. Both armies have already agreed to attack a shared enemy, but have yet to 

decide on a time. Both armies must attack at the same time or else failure is assured. 

Both armies can send messengers, but the messengers are often captured by the enemy. 

Both armies must know what time to attack and that the other army has also agreed to 

this time. 

Ultimately, a generic solution to the two generals’ problem with a finite number of 

messages is impossible, so engineering approaches have had to embrace uncertainty by 

necessity. Many distributed systems make trade-o"s to deal with this uncertainty. Some 

systems embrace consistency, which means that the system will choose downtime over 

inconsistent answers. Other systems embrace availability, which means that the system 

chooses potentially inconsistent answers over downtime. The widely-cited CAP theo- 

rem [12, 13] states that every system must choose only two of consistency, availability, and 

partition tolerance. Due to the inevitability of network failures, partition tolerance is non- 

negotiable, so when a partition happens, every system must choose to sacrifice either 

consistency or availability. Many systems sacrifice both (sometimes by accident). 

In the CAP theorem, consistency (specifically, linearizability) means that every read re- 

ceives the most recent write or an error, so an inconsistent answer means the system 

returned something besides the most recent write without obviously failing. More gener- 

ally, there are a number of other consistency models that may be acceptable by making 

various trade-o"s. Linearizability, sequential consistency, causal consistency, PRAM consis- 
1 earlier described as a problem between groups of gangsters [86] 
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tency, eventual consistency, read-after-write consistency, etc., are all models for discussing 

how a history of events appears to various participants in a distributed system.2 

Amazon S3 generally provides read-after-write consistency, though in some cases will 

provide eventual consistency instead [89]. Many distributed databases provide eventual 

consistency by default, such as Dynamo [25] and Cassandra [63]. 

Linearizability in a distributed system is often much more desirable than more weakly 

consistent models, as it is useful as a building block for many higher level data structures 

and operations (such as distributed locks and other coordination techniques). Initially, 

early e"orts to build linearizable distributed consensus centered around two-phase com- 

mit, then three-phase commit, which both su"ered due to issues similar to the two gen- 

erals’ problem. In 1985, the FLP-impossibility paper [90] proved that no algorithm could 

reach linearizable consensus in bounded time. Then in 1988, Barbara Liskov and Brian 

Oki published the Viewstamped Replication algorithm [91] which was the first lineariz- 

able distributed consensus algorithm. Unaware of the VR publication, Leslie Lamport set 

out to prove linearizable distributed consensus was impossible [92], but instead in 1989 

proved it was possible by publishing his own Paxos algorithm [93], which became sig- 

nificantly more popular, even though it wasn’t o cially published in a journal until 1998. 

Ultimately, both algorithms have a large amount in common. 

Despite Lamport’s claims that Paxos is simple [94], many papers have been published 

since then challenging that assertion. Google’s description of their attempts to imple- 

ment Paxos are described in Paxos Made Live [95], and Paxos Made Moderately Com- 

plex [96] is an attempt to try and fill in all the details of the protocol. The entire basis of 

the Raft algorithm is rooted in trying to wrangle and simplify the complexity of Paxos [24]. 

Ultimately, after an upsetting few decades, reliable implementations of Paxos, Raft, View- 

stamped Replication [97], Chain Replication [98], and Zab [99] now exist, with ongoing 

work to improve the situation further [100, 101]. Arguably, part of Google’s early success 

was in spending the time to build their internal Paxos-as-a-service distributed lock sys- 

tem, Chubby [102]. Most of Google’s famous early internal data storage tools, such as 

Bigtable [103], depend on Chubby for correctness. Spanner [64]—perhaps one of the most 

incredible distributed databases in the world—is largely just two-phase commit on top of 

multiple Paxos groups. 

 
 

 Byzantine distributed consensus 

As mentioned in our design constraints, we expect most nodes to be rational and some 

to be Byzantine, but few-to-none to be altruistic. Unfortunately, all of the previous algo- 

rithms we discussed assume a collection of altruistic nodes. Reliable distributed consen- 

sus algorithms have been game-changing for many applications requiring fault-tolerant 
2If di"ering consistency models are new to you, it may be worth reading about them in Kyle Kingbury’s 

excellent tutorial [87]. If you’re wondering why computers can’t just use the current time to order events, keep 

in mind it is exceedingly di cult to get computers to even agree on that [88]. 
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storage. However, success has been much more mixed in the Byzantine fault tolerant 

world. 

There have been a number of attempts to solve the Byzantine fault tolerant distributed 

consensus problem. The field exploded after the release of BitCoin [23], and is still in 

its early stages. Of note, we are particularly interested in PBFT [104] (Barbara Liskov 

once again with the first solution), Q/U [105], FaB [106] (but see [107]), BitCoin, Zyzzyva 

[108] (but also see [107]), RBFT [109], Tangaroa [110], Tendermint [111], Aliph [112], Hashgraph 

[113], 

HoneybadgerBFT [114], Algorand [115], Casper [116], Tangle [117], Avalanche [118], PARSEC 

[119], and others [120]. 

Each of these algorithms make additional trade-o"s, that non-Byzantine distributed 

consensus algorithms don’t require, to deal with the potential for uncooperative nodes. 

For example, PBFT [104] causes a significant amount of network overhead. In PBFT, every 

client must attempt to talk to a majority of participants, which must all individually reply 

to the client. BitCoin [23] intentionally limits the transaction rate with changing proof-of- 

work di culty. Many other post-BitCoin protocols require all participants to keep a 

full copy of all change histories. 

 
 

 Why we’re avoiding Byzantine distributed consensus 

Ultimately, all of the existing solutions fall short of our goal of minimizing coordination (see 

section 2.10). Flexible Paxos [101] does significantly better than normal Paxos in the steady- 

state for avoiding coordination, but is completely unusable in a Byzantine environment. 

Distributed ledger or “tangle-like” approaches su"er from an inability to prune history and 

retain significant global coordination overhead. 

We are excited about and look forward to a fast, scalable Byzantine fault tolerant solu- 

tion. The building blocks of one may already be listed in the previous discussion. Until it 

is clear that one has arisen, we are reducing our risk by avoiding the problem entirely. 



 

 

 

 

B. Attacks 

 
As with any distributed system, a variety of attack vectors exist. Many of these are common 

to all distributed systems. Some are storage-specific and will apply to any distributed 

storage system. 

 
 

 Spartacus 

Spartacus attacks, or identity hijacking, are possible on unmodified Kademlia [8]. Any 

node may assume the identity of another node and receive some fraction of messages 

intended for that node by simply copying its node ID. This allows for targeted attacks 

against specific nodes and data. Spartacus attack mitigation is addressed in S/Kadem- 

lia [32] by implementing node IDs as public key hashes and requiring messages to be 

signed. A Spartacus attacker in this system would be unable to generate the correspond- 

ing private key, and thus unable to sign messages and participate in the network. 

 
 

 Sybil 

Sybil attacks [74] involve the creation of large amounts of nodes in an attempt to disrupt 

network operation by hijacking or dropping messages. While Kademlia [8] is vulnerable 

to Sybil attacks, our adoption of S/Kademlia [32] proof of work identity generation (section 

4.4) reduces the vulnerability to a degree. 

Further, our storage node reputation system involves a prolonged initial vetting period 

nodes must complete before they are trusted with significant amounts of data or mem- 

bership in Kademlia routing tables. This vetting system, discussed more in sections 4.6.1 

and 4.15, prevents a large influx of new nodes from taking incoming data from existing 

reputable storage nodes without first proving their longevity. 

 
 

 Eclipse 

An eclipse attack attempts to isolate a node or set of nodes in the network graph by 

ensuring that all outbound connections reach malicious nodes. Eclipse attacks can be 

hard to identify, as malicious nodes can be made to function normally in most cases, only 

eclipsing certain important messages or information. Daatty Cloud Coin addresses 

eclipse attacks by using public key hashes as node IDs, signatures based on those 

public keys, and multiple disjoint network lookups as prescribed by S/Kademlia 

[32]. 

The larger the network is, the harder it will be to prevent a node from finding a portion 

of the network uncontrolled by an attacker. As long as a storage node or Satellite has 
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been introduced to a portion of the network that is not controlled by the attacker at 

any point, the public key hashes and signatures ensure that man-in-the-middle attacks 

are impossible, and multiple disjoint network lookups ensure that Kademlia routing is 

prohibitively expensive to bias. 

To avoid an eclipse attack, all that remains is to make sure new nodes are appropriately 

introduced to at least one well-behaved node on the network during the bootstrapping 

process. To that end, Daatty Cloud Coin Labs will run some well-known, verified 

bootstrap nodes. 

 
 

 Honest Geppetto 

In this attack, the attacker operates a large number of “puppet” storage nodes on the net- 

work, accumulating reputation and data over time. Once a certain threshold is reached, 

she pulls the strings on each puppet to execute a hostage attack with the data involved, 

or simply drops each storage node from the network. The best defense against this attack 

is to create a network of su cient scale that this attack is ine"ective. In the meantime, 

this can be partially prevented by relatedness analysis of storage nodes. Bayesian infer- 

ence across downtime, latency, network route, and other attributes can be used to assess 

the likelihood that two storage nodes are operated by the same organization. Satellites 

can and should attempt to distribute pieces across as many unrelated storage nodes as 

possible. 

 
 

 Hostage bytes 

The hostage byte attack is a storage-specific attack where malicious storage nodes refuse 

to transfer pieces, or portions of pieces, in order to extort additional payments from clients. 

The Reed-Solomon encoding ought to be su cient to defeat attacks of this sort (as the 

client can simply download the necessary number of pieces from other nodes) unless 

multiple malicious nodes collude to gain control of many pieces of the same file. The 

same mitigations discussed under the Honest Geppetto attack can apply here to help 

avoid this situation. 

 
 

 Cheating storage nodes, Uplinks, or Satellites 

Measuring bandwidth with signatures minimizes the risk for Uplink and storage nodes. 

The Uplink can only interact with the storage node by sending a signed restricted alloca- 

tion. The restriction limits the risk to a very low level. The storage node has to comply with 

the protocol as expected in order to get more restricted allocations. Storage nodes and 

Satellites will commence a vetting process that limits their exposure. Storage nodes are 

allowed to decline requests from untrusted Satellites. 
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 Faithless storage nodes and Satellites 

While storage nodes and Satellites are built to require authentication via signatures before 

serving download requests, it is reasonable to imagine a modification of the storage node 

or Satellite that will provide downloads to any paying requestor. Even in a network with 

a faithless Satellite, data privacy is not significantly compromised. Strong client-side en- 

cryption protects the contents of the file from inspection. Daatty Cloud Coin is not 

designed to protect against compromised clients. 

 
 

 Defeated audit attacks 

A typical Merkle proof verification requires pre-generated challenges and responses. With- 

out a periodic regeneration of these challenges, a storage node can begin to pass most 

audits without storing all of the requested data. Instead, we request a random stripe of 

erasure shares from all storage nodes. We run the Berlekamp-Welch algorithm [73] across 

all the erasure shares. When enough storage nodes return correct information, any faulty 

or missing responses can easily be identified. New storage nodes will be placed into a 

vetting process until enough audits have passed. See section 4.15 for more details. 



 

 

 

 

C. Primary user benefits 

 
We have designed the Daatty Cloud Coin network to provide users better security, 

availability, perfor- mance, and economics—across a wide variety of use cases—than either 

on-premise storage solutions or traditional, centralized Cloud storage. While the bulk of 

this paper describes the design considerations to overcome the challenges of a highly 

decentralized system, this appendix describes why the end result should be a 

significant improvement over traditional approaches. 

 
 

 Security 

We have designed our system to be the equivalent of spreading encrypted sand on an 

encrypted beach. All data is encrypted client-side before reaching our system. Data is 

sharded and distributed across a large number of independently operated disk drives 

which are part of a much larger network of independently operated storage nodes. 

In a typical scenario (with a 20/40 Reed-Solomon setup), each file is distributed across 

40 di"erent disk drives in a global network of over 100,000 independently operated 

nodes. (The previous version of the Daatty Cloud Coin network had over 150,000 

independently op- erated nodes.) To compromise an individual file, a would-be bad 

actor would have to locate and compromise roughly 40 di"erent drives, each operated 

by a di"erent provider, in a network of over 100,000 drives. Even if the actor were 

somehow able to compromise those drives, to reconstruct the file, the would-be bad 

actor would then have to decrypt 256-bit AES encrypted data, with keys that are only 

held by the end user. And, the would- be bad actor would have to repeat this process 

with an entirely di"erent set of potential drives for the next file they wish to obtain. 

By design, it is not possible for Daatty Cloud Coin, Satellite operators, storage 

node operators, or would-be bad actors to mine or compromise end user data. The level 

of decentralization on the network creates powerful disincentives for malicious actors, 

as there is no central- ized trove of data to target. 

 
 

 Availability 

While most centralized Cloud providers employ various strategies to provide protection 

against individual drive failures, they are not immune to system-wide events. Storms, 

power outages, floods, earthquakes, operator error, design flaws, network overload, or at- 

tacks can compromise entire data centers. 

While the centralized providers may calculate and publish theoretically high availability 

numbers, these calculations depend on drive failures being uncorrelated. In fact, in any 
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data center, the chances of an individual drive failing is highly correlated with the chances 

of another drive failing. 

In a decentralized system, by contrast, each node is operated by a di"erent individ- 

ual, in a di"erent location, with separate personnel, power, network access, and so forth. 

Therefore, the chance of an individual node failing is almost entirely uncorrelated with 

the chances of other drives failing. As a result, the kinds of availability we obtain are not 

subject to storms, power outages, or other “black swan” events. Even if the chance of an in- 

dividual drive failing in the Daatty Cloud Coin network is higher than in a centralized 

Cloud, the chance of collective failure (e.g. losing 20 out of 40 independent drives) is 

vanishingly small. In ad- dition, the chance of losing one file is not correlated with the 

chances of losing a second file. 

 
 

 Performance 

For read-intensive use cases, the Daatty Cloud Coin network can deliver superior 

performance by taking advantage of parallelism. The storage nodes are located close to 

“the edge,” reducing the latency experienced when recipients of data are physically far 

from the data center that houses the data. Read performance benefits from 

parallelism. The particular erasure coding scheme that we use ensures that slow 

drives, slow networks, or networks and drives experiencing temporarily high load do 

not limit throughput. We can adjust the k/n ratio so that we dramatically improve 

download and streaming speeds, without imposing the kinds of high costs 

associated with CDN networks. 

 
 

 Economics 

While the amount of data created around the world has doubled every year, the price of 

Cloud storage has only declined about 10% per year over the last three years. There are a 

number of potential explanations, both on the supply and demand side. 

Public Cloud storage operators must make large capital investments in building out a 

network of data centers and must incur significant costs for power, personnel, security, fire 

suppression, and so forth. Their pricing structure must allow them to recoup those costs. 

Moreover, the structure of the industry is such that it is inherently oligopolistic: there are 

only a handful of public Cloud companies, and they comprise the largest companies 

by market cap on the planet (Microsoft, Google, Amazon, Alibaba). As any price 

decreases by one provider are quickly matched by the other providers, there has been 

little incentive for providers to drop prices to gain market share. 

In a decentralized network, by contrast, there is little marginal cost to being a stor- 

age node operator. In our experience, the vast majority of operators are using existing 

live equipment with significant spare capacity. There is no additional cost to a storage 

node operator in terms of capital or personnel. Running a drive at full capacity does not 
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consume significantly more power than running a drive with excess space. And, with 

careful management relative to caps, most operators should not experience increased 

bandwidth costs. Consequently, operating a node represents nearly pure margin, and 

these supply cost savings can be passed on to end users. 

We have designed market mechanisms on the demand side as well, to prevent any 

Satellite operator from cornering the market. Even after providing a healthy margin to 

farmers, demand partners, and Satellite operators, we believe we should be able to pro- 

vide profitable storage services at a fraction of the cost of equivalent centralized 

Cloud storage providers. 
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