
TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/

WHITEPAPER
TECHNICAL VERSION

EDITED 4.24.2018

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/

1

Forward 

 
All technologies have both advantages and disadvantages. That's
why we are combining technologies into the creation of one coin.
CrypticCoin gives our users the ability to choose, compare and
eventually use the confidentiality mechanism that best suits them.
CrypticCoin is a coin designed for the discretion of users by offer-
ing them the appropriate tools.

As a basis, we decided to implement a mix of an enriched version
of the ZeroCash Protocol (zk-SNARK systems protocol) and a  
Hybrid version of Verge (Stealth Addressing Technologies). How-
ever, we make no claims that CrypticCoin will offer only these two
mechanisms, over time, other privacy technologies (e.g., Confiden-
tial Transactions) will be implemented in CrypticCoin. Over time
other privacy technologies will be added to CrypticCoin. Cryptic-
Coin also has proprietary enhanced security measures built in to
further enhance the system of security within the CrypticCoin Eco-
system.

It is with such functionality that CrypticCoin will be presented to
the community. We suggest and encourage users have shielded
transactions enabled by default.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/2

Introduction
Most cryptocurrencies are based on blockchains in which payment
transactions are stored "as is" in a decentralized ledger. Because
the blockchain is public, said details such as a sender’s public ad-
dress, recipients public address, and payment amount about each
transaction as well as the history of all transactions can be viewed
by anyone. While public addresses are not explicitly tied to users'
real identities, there are ways to learn more about users, their
spending habits and relationships with each other using informa-
tion stored in most blockchains. In most cases, wallets used for
making transactions do not support anonymity features while con-
necting to blockchain nodes. A user's location can be determined
by IP address of the used device and privacy of the transaction is
eliminated.

CrypticCoin (CRYP) is a decentralized and open-source crypto-
currency that aims to connect best practices regarding the pri-
vacy and anonymity for its users. CrypticCoin allows users to
engage in direct transactions rapidly and a high level of pri-
vacy.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/3

As of 1-18-2018 there were roughly 7,598,607,351
people exist on Planet Earth, therefore maximum
supply of 7,598,607351 coins will be distributed.

One for every person on Earth. We all deserve to
control and manage our own privacy!

MAX SUPPLY DEFINED

Security, Anonymity &
Privacy All In One!

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/4

Enriched ZeroCash Protocol Integration

CrypticCoin further enhances levels of security and privacy by us-
ing the Zerocash protocol to its advantage. Utilizing the ZeroCash
Protocol improves privacy by adding levels of transactions and en-
sures that payment transactions do not contain any public informa-
tion about the sender’s address, recipient's address or any trans-
ferred amounts. This is achieved by adding a sub-coins level to the
existing base-coins. Each user can convert base-coins into sub-
coins (1:1) to be able to make more private payment transactions.
Users can also convert sub-coins back into base-coins (1:1) at any
time when they want.

CrypticCoin further utilizes the enriched Zerocash functionality by
implementing two new types of transactions: Fresh Mint transac-
tions and Pour transactions, which are recorded to the public
ledger as well.

A fresh mint transaction allows users to convert a specified num-
ber of base-coins (debited from any one of the owned base-coins
accounts) into the same number of sub-coins (credited to any one
of the owned sub-coins accounts).

The fresh mint transaction itself consists of a cryptographic com-
mitment, which specifies the amount of converted sub-coins,
owner address and unique serial number. The commitment is
based on the SHA-256 hash function, that allows to hide both the
converted amount and owner address. However, the commitment
is constructed so that anyone can verify that the committed sub-
coin has the claimed value.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/5

Enriched ZeroCash Protocol Integration

A pour transaction allows a user to make a private payment, by
consuming some amount of sub-coins owned by the user in order
to produce the same amount of sub-coins to the recipient. The cor-
rectness of the transaction is validated via the use of zero-
knowledge proof
(https://en.wikipedia.org/wiki/Zero-knowledge_proof).

A pour transaction, for (up to) two input sub-coins and (up to) two output sub-coins, involves prov-
ing, in zero knowledge, that:

- The user owns the two input sub-coins.

- Each one of the input sub-coins appears in some previous mint transaction or as the output sub-
coin of some previous pour transaction.

- The total value of the input sub-coins equals the total value of the output sub-coins.

The pour transaction consumes the input sub-coins by revealing
their serial numbers, but does not reveal any other information
such as the amount of the input or output sub-coins, or the ad-
dresses of their owners.

The pour transaction can also output some amount of base-coins.
This feature can be used to convert sub-coins back into base-
coins or to pay transaction fees.

For a pour transaction, anyone can verify that the zero-knowledge
proof contained therein is valid. For efficiency, our integrated use
of the Zerocash Protocol uses "Zero-Knowledge Succinct Non-
interactive Arguments of Knowledge" (zk-SNARK) systems, which
are zero-knowledge proofs that are particularly short and easy to
verify.

https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Zero-knowledge_proof

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/6

Privacy on/off options for transactions

With CrypticCoin users have the ability to choose what type of
transaction they want to make - public or private.

A public transaction is recorded to the CrypticCoin public ledger in
an unchanged form with the sender's public address, recipient's
public CrypticCoin address and payment amount of CRYP
transferred.

This type of transaction can be done if it is necessary to prove to a
third party that the sender did, in fact, make a particular transac-
tion.

A private CrypticCoin transaction is recorded to the public ledger
using a one-time public key which is generated by a special algo-
rithm. When analyzing blockсhain, such transactions are not trace-
able on a public ledger and can not be uniquely mapped to an-
other transaction, so there is no possibility to analyze the activity
of any network member using the public ledger, with whom and in
what quantity exchanged in the transactions.

Private transactions will be improved by the implementation of the
ZeroCash protocol, which completely hides the transferred amount
and the transaction metadata. It will increase the privacy of pay-
ments by consuming coins transferred by a sender in order to pro-
duce the same amount of new coins for a recipient. So, received
coins will not have a history. Regardless of a transaction type, the
connection between a user's wallet and the blockchain are ano-
nymized by default through hiding the user's real IP address when
making transactions.

High levels of privacy and anonymity are achieved by the effective
integration of such technologies as: Hybrid Stealth Addressing, Ze-
roCash protocol and IP Obfuscation.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/7

Hybrid Stealth Addressing

When users create a CrypticCoin account they will have a private
view key, a private spend key, and a public address. The spend
key is used to send payments and the view key is used to display
incoming transactions destined for users accounts. Users do not
need to interact with these keys directly, all accounts (and their cor-
responding keys) are managed by a user's wallet. Nevertheless,
the owner of the wallet can access them if necessary. Both the
spend key and view key are used to build your CrypticCoin public
address, which users present to a sender for receiving payments.
Users can increase their privacy by providing different CrypticCoin
public addresses for senders (users create separate accounts for
interactions with different senders). But even in this case, all user
transactions with a particular sender are linked with each other in
public ledger using the same CrypticCoin public address.

We have enriched the Stealth Addressing technology which allows users to pub-
lish one address for everyone (a Hybrid Stealth Address) and at the same time
greatly increases the privacy of received payments.

Hybrid Stealth Addresses allow/require the sender to create ran-
dom one-time CrypticCoin public addresses for every transaction
on behalf of the recipient. So, the recipient will have all of their in-
coming payments go to unique CrypticCoin public addresses on
the blockchain, where they cannot be linked back to either the re-
cipient's published addresses (stealth or public) or any other trans-
actions addresses.

These unique CrypticCoin public addresses can only be recovered
and spent by the recipient. By using Hybrid Stealth Addresses,
only the sender and receiver can determine where a payment was
sent. No one else will have the ability to link the wallet addresses
together by investigating transactions on the blockchain.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/8

Hybrid Stealth Addressing

Hybrid Stealth Addressing key features:

- Hybrid Stealth Addresses cannot be linked publicly to either  
 the randomly created one-time CrypticCoin public address or  
 any other one-time CrypticCoin public addresses.

- Hybrid Stealth Addresses can be recovered and spent by the  
 recipient only.

- Only the recipient can link together all the payments made  
 using their Hybrid Stealth Addresses.

Hybrid Stealth Addressing functionality is achieved through the El-
liptic Curve Diffie-Hellman (ECDH) cryptography system. Cryptic-
Coin Hybrid Stealth Address is a string that consists of a public
view key and the public send key of the recipient. While making a
payment, any sender is able to calculate a unique one-time public
key for the recipient’s new output on basis of this Hybrid Stealth
Address. ECDH algorithm ensures that the one-time public key can-
not be reverse engineered and that nobody else can duplicate it.
This output can be located by the recipient’s wallet during scan-
ning the blockchain with wallet’s private view key. After the output
is detected and retrieved, recipient’s wallet can calculate a one-
time private key that corresponds with the one-time public key of
the output. So, the recipient’s wallet always knows about the cur-
rent available balance. The recipient can spend the relevant output
with their wallet’s private spend key.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/9

IP Obfuscation

To improve the privacy of connectivity between a user’s wallet and
the blockchain, all wallet distros (full and lightweight) will support
anonymity features out of the box. This is done via integration of IP
obfuscation service into distros.

Tor (“The Onion Router”) is used as an IP obfuscation service. It is
a decentralized system that enables anonymous communications
through a network of relays which serve to obfuscate IP address-
ing information by bouncing connections from node to node at ran-
dom, effectively eliminating any information trails.

Tor redirects the users internet traffic through a free worldwide re-
lay network to hide users location and interests from anyone who
monitors networks or makes traffic analysis.

Tor uses the onion routing mechanism, which is implemented by
nested encryption on the application layer of TCP/IP stack.

Tor encrypts transmitted data, including the next node destination
IP, and sends it through a virtual circuit of randomly selected
relays.

Each relay in a virtual circuit decrypts only the necessary layers of
the data packets to find out which relay the data came from, and
to which relay to send it next. The relay then rewraps the package
and sends it on.

The last relay decrypts all layers of encryption and sends the origi-
nal data to the intended destination without knowing the IP ad-
dress of real origin source.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/10

IP Obfuscation

Because the routing of all communication is partially hidden at
every hop in the virtual circuit, the onion routing mechanism elimi-
nates the possibility that the final communicating peers can be de-
termined by anyone who may apply surveillance to the network.

Tor's use is intended to protect the personal privacy of users, as
well as their freedom and ability to conduct confidential communi-
cation by keeping their Internet activities from being monitored.

IP obfuscation functionality will be expanded by I2p technology in-
tegration within wallets. I2p (invisible internet project) is a highly ob-
fuscated tunneling service using ipv6 that is similar to Tor, but has
some other major advantages.

Instead of circuit based routing with Tor, I2P performs packet
based routing that is similar to the internet's IP routing. In addition,
I2p does not rely on a centralized directory service to get route in-
formation as Tor does. It uses distributed hash tables (DHTs) to co-
ordinate the state of the network, so network routes are updated
dynamically. Also, I2p establishes two independent simplex tun-
nels for traffic to and from each host as opposed to Tor's single du-
plex circuit.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/11

Wallets
CrypticCoin offers desktop users full QT-based wallets and light-
weight Electrum-based wallets for all popular operating systems
(Linux, MacOS, Windows).

CrypticCoin will offer mobile users “easy-to-use” lightweight
Electrum-based wallets with unique design for popular mobile oper-
ating systems (Android, iOS).

All CrypticCoin wallets support anonymity features by default
through hiding the user's real IP address when making transac-
tions, i.e. all wallets have Tor integration out of the box. So, the wal-
lets have no built-in ability to connect to or broadcast user data
over clear internet.

To increase user security, wallets have multi-signature support,
which requires more than one key to authorize a transaction. Also,
wallets are able to handle P2P QR-code scan transactions with in-
stant verification. Clients are able to also import QR-codes from pa-
per wallets to pull balances from cold storage if desired. A light-
weight Electrum-based wallet does not need to download the
whole blockchain, instead it requests the necessary information
from secure remote Electrum servers which handle the rest of the
CrypticCoin network. Electrum servers do not store user accounts
with private keys. Private keys never leave user devices and are
not shared with Electrum servers. Lightweight Electrum-based wal-
lets are fast with low resource usage, have no delays for primary
synchronization and are always up-to-date.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/12

Wallets

A lightweight Electrum-based wallet helps protect users from their
own mistakes and allows users to recover their wallet with a secret
seed phrase. Additionally, it offers a simple and easy to use cold
storage solution. This allows users to store all or part of their coins
in an offline manner. While using the lightweight Electrum-based
wallet, transactions are completed via Simple Payment Verification
(SPV), a technique that allows for the wallet to verify transactions
through proof of inclusion; a method for verifying if a particular
transaction is included in a block without downloading the entire
block. SPV allows for nearly instant payment confirmations be-
cause it acts as a thin client that only needs to download the block
headers, which are drastically smaller than full blocks.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/13

FreeCO
CrypticCoin is not launched through an ICO. The founders have
paid for the development and launch of the CrypticCoin and its cor-
responding ecosystem without raising millions of dollars using an
ICO. Instead of distributing the initial share of CrypticCoins only be-
tween founders, the team and advisors, CrypticCoin will reward
the initial community of early adopters as well.

In the beginning, CrypticCoin will launch the Free Coin Offering
(FreeCO) and give away free coins to early adopters, who will be
participating in the FreeCO. Furthermore, there will be long-term
post-FreeCO to incentivize community members, encourage active
participants and promote CrypticCoin to make our community
grow.

The amount of coins that will be distributed during FreeCO is lim-
ited to 5% of the CrypticCoin total supply. The amount of coins
that will be distributed during post-FreeCO is limited to 10% of the
CrypticCoin total supply.

Here at CrypticCoin it was decided to do things differently and give
free coins to the community. Most importantly, we want to encour-
age the inclusion of newbies to the crypto space to make it more
known what the potential of cryptocurrency is. It is the vision of the
CrypticCoin team to build and launch something they believe in.
CyrpticCoin offers security, anonymity and privacy for every human
being.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/14

FreeCO
Free CrypticCoins will be distributed through a one-time links
mechanism during FreeCO and post-FreeCO. The one-time link
represents a gift certificate for some amount of free CrypticCoins
(designated by a CrypticCoin admin that carries out the will of the
founders and advisory team). The community members will receive
their free CrypticCoins using these one-time links. All that is
needed is to follow the one-time link and present the CrypticCoin
address to which the corresponding amount of CrypticCoins will
be transferred immediately from the FreeCo or post-FreeCo pool.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/15

Economics
CrypticCoin launches with a capped supply. Only 7.6 billion
(7,598,607,351 to be exact) CrypticCoins will be issued ever. In to-
tal CrypticCoin will have 55% pre-mined CrypticCoins and 45%
CrypticCoins available for mining for about 6 years. The purposes
of 55% pre-mined CrypticCoins are the following:

- 30% pre-mined CrypticCoins will be reserved for founders  
 and team.

 This amount will be transferred to 30 wallets (1% to each wallet).

- 10% pre-mined CrypticCoins will be reserved for advisors,  
 ambassadors and expansion and growth purposes. This amount
will be transferred to 20 wallets (0.5% to each wallet).

- 5% pre-mined CrypticCoins will be reserved for FreeCO and  
 will be transferred to a dedicated address of the FreeCO pool.

- 10% pre-mined CrypticCoins will be reserved for post-FreeCO
and will be transferred to a dedicated address of the post-FreeCO
pool.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/16

Multi-Mining

CrypticCoin supports multi-mining that combines the 5 Proof-of-
Work hashing algorithms: Scrypt, Blake2s, X17, Myr-Groestl and
Lyra2REv2. It means that a wide range of people with different
types of mining devices have equal opportunities for mining Cryp-
ticCoins. In addition, multi-mining allows the CrypticCoin to have
higher protections against Sybil Attacks compared to other crypto-
currencies, which support only single PoW hashing algorithm. All
5 mining algorithms have the same target block time and only their
hash rates are impacted due to the target difficulty.

17
TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/

Technical Overview

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/18

CrypticCoin gives our users the ability to choose, compare
and eventually use the confidentiality mechanism that best
suits them. CrypticCoin is a coin designed for the discretion of us-
ers by offering them the appropriate crypto tools.

As a basis, we decided to implement a mix of an enriched and en-
hanced version of the ZeroCash Protocol (zk-SNARK systems pro-
tocol) and a Hybrid version of Verge (Stealth Addressing Technolo-
gies). However, we make no claims that CrypticCoin will offer only
these two mechanisms, over time, other privacy technologies (e.g.,
Confidential Transactions) will be implemented in CrypticCoin.
Over time other privacy technologies will be added to CrypticCoin. 
 
Deep view of ZeroCash Protocol

CrypticCoin set its goal to build one of the most reliable and se-
cure privacy coins on the market. There was a decision to merge
the ZeroCash protocol with others to provide multiple layers of se-
curity in a cryptocurrency. ZeroCash is an amazing cryptography
protocol, thanks to the work of a group of scientists. Zerocash is a
solution for private payments using cryptocurrency.

They introduced the notion of a decentralized anonymous payment
scheme (DAP scheme), which formally captures the functionality
and security guarantees of a full-fledged decentralized electronic
currency with strong anonymity guarantees. The construction of
this protocol has proved its high level of security under specific
cryptographic assumptions. The construction leverages recent ad-
vances in the area of zero-knowledge proofs. Specifically, it uses
zero-knowledge Succinct Non-interactive ARguments of Knowl-
edge (zk-SNARKs). ZeroCash is not an extension to bitcoin proto-
col, but rather an independent technology with the same basic prin-
ciples as blockchain and transactions.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/19

Concept Overview : Zerocash Protocol

Zerocash protocol concept extends Bitcoin's protocol by
adding new types of transactions that will be utilized by Cryptic-
Coin ecosystem. The new transactions provide a separate
privacy-preserving currency. This separate privacy-preserving  
currency’s transactions reveal neither the payment's origin,  
destination, or amount.

Using the ZeroCash Protocol in the CrypticCoin ecosystem, Cryp-
ticCoin will create an separate anonymous currency, existing along-
side a (non-anonymous) base currency, which they refer to as Cryp-
ticCoin(CRYP). Each user can convert (non-anonymous) CrypticCo-
in(CRYP) into (anonymous) PrivateCrypticCoin coins, which we
call (PCRYP). Users can then send PCRYP to other users and split
or merge CRYP they own in any way that preserves the total value.
Users can also convert PCRYP back into CRYP, though in princi-
ple this is not necessary: all payments can be directly made in
terms of PCRYP. Functionality is realized using just two types of
transactions: Mint transactions and Pour transactions.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/20

Decentralized anonymous payments

Decentralized anonymous payments (DAP) which is a decentral-
ized e-cash concept that allows direct anonymous payments of
any amount.

At any given time, a unique valid snapshot of the currency’s ledger
is available to all users. The ledger is a sequence of transactions
and is append-only. Transactions include both the underlying  
currency’s transactions, as well as new transactions introduced by
our construction. For concreteness, they focus the discussion  
below on crypto currency (though later definitions and construc-
tions are stated abstractly).

Step 1: User anonymity with fixed-value coins. This construc-
tion, similar to the Zerocoin protocol, shows how to obscure a pay-
ment’s origin. In terms of tools, they make use of zk-SNARKs (re-
called above) and a commitment scheme. Let COMM denote a
statistically-hiding non-interactive commitment scheme (i.e., given
randomness r and message m, the commitment is c := COMMr(m);
subsequently, c is opened by revealing r and m, and one can verify
that COMMr(m) equals c).

In the simplified construction, a new coin c is minted as follows: a
user u samples a random serial number sn and a trapdoor r, com-
putes a coin commitment cm := COMMr(sn), and sets c :=
(r,sn,cm). A corresponding mint transaction 𝑡𝑥𝑀𝑖𝑛𝑡, containing cm
(but not sn or r), is sent to the ledger; 𝑡𝑥𝑀𝑖𝑛𝑡 is appended to the
ledger only if μ has paid 1 CRYP to a backing escrow pool (e.g.,
the 1 CRYP may be paid via plaintext information encoded in 𝑡𝑥𝑀𝑖𝑛𝑡

). Mint transactions are thus certificates of deposit, deriving
their value from the backing pool.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/21

Decentralized anonymous payment schemes

Subsequently, letting CMList denote the list of all coin commit-
ments on the ledger, u may spend c by posting a spend transac-
tion 𝑡𝑥𝑆𝑝𝑒𝑛𝑑 that contains (i) the coin’s serial number sn; and (ii) a zk-

SNARK proof π of the NP statement “I know r such that COMMr
(sn) appears in the list CMList of coin commitments”. Assuming
that sn does not already appear on the ledger (as part of a past
spend transaction), μ can redeem the deposited amount of 1
CRYP, which μ can either keep for himself, transfer to someone
else, or immediately deposit into a new coin. (If sn does already ap-
pear on the ledger, this is considered double spending, and the
transaction is discarded.)

User anonymity is achieved because the proof π is zero-
knowledge: while sn is revealed, no information about r is, and
finding which of the numerous commitments in CMList corre-
sponds to a particular spend transaction 𝑡𝑥𝑆𝑝𝑒𝑛𝑑 is equivalent to in-
verting f(x):= COMMx(sn), which is assumed to be infeasible. Thus,
the origin of the payment is anonymous.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/22

Decentralized anonymous payment schemes

Step 2: compressing the list of coin commitments.

In the previous NP statement, CMList is specified explicitly as a list
of coin commitments. This naive representation severely limits scal-
ability because the time and space complexity of most protocol al-
gorithms (e.g., the proof verification algorithm) grows linearly
with CMList. Moreover, coin commitments corresponding to al-
ready spent coins cannot be dropped from the CMList to reduce
costs, since they cannot be identified (due to the same zero-
knowledge property that provides anonymity).

It relies on a collision-resistant hash function CRH to avoid an ex-
plicit representation of CMList. It’s maintain an efficiently up-
datable append-only CRH-based Merkle tree Tree(CMList) over the
(growing) list CMList. Letting rt denote the root of Tree (CMList), it
is well-known that updating rt to account for insertion of new
leaves can be done with time and space proportional to the tree
depth. Hence, the time and space complexity is reduced from lin-
ear in the size of CMList to logarithmic. With this in mind, they mod-
ify the NP statement to the following one: “I know r such that
COMMr(sn) appears as a leaf in a CRH-based Merkle tree whose
root is rt”. Compared with the naive data structure for CMList, this
modification increases exponentially the size of CMList which a
given zk-SNARK implementation can support (concretely, using
trees of depth 64, Zerocash supports 264 coins).

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/23

Decentralized anonymous payment schemes

Step 3: extending coins for direct anonymous payments.

So far, the coin commitment cm of a coin c is a commitment to the
coin’s serial number sn . However, this creates a problem when
transferring c to another user. Indeed, suppose that a user uA cre-
ated c, and uA sends c to another user uB. First, since uA knows sn,
the spending of c by uB is both not anonymous (since uA sees
when c is spent, by recognizing sn) and risky (since uA could still
spend c first). Thus, uB must immediately spend c and mint a new
coin c' to protect himself. Second, if uA in fact wants to transfer to
uB, e.g., 100BTC, then doing so is both unwieldy (since it requires
100 transfers) and not anonymous (since the amount of the trans-
fer is leaked). And third, transfers in amounts that are not multiples
of 1 BTC (the fixed value of a coin) are not supported. Thus, the
simplified construction described is inadequate as a payment
scheme.

They address this by modifying the derivation of a coin commit-
ment, and using pseudorandom functions to target payments and
to derive serial numbers, as follows. They use three pseudoran-
dom functions (derived from a single one). For a seed x these are
denoted 𝑃𝑅𝐹𝑥𝑎𝑑𝑑𝑟(˙), 𝑃𝑅𝐹𝑥𝑠𝑛(˙), and 𝑃𝑅𝐹𝑥𝑝𝑘(˙). They assume that
PRFsn is moreover collision-resistant.

To provide targets for payments, they use addresses: each user u
generates an address key pair (apk,ask). The coins of u contain the
value apk and can be spent only with knowledge of ask. A key pair
(apk,ask) is sampled by selecting a random seed ask and setting  
apk := 𝑃𝑅𝐹apk𝑎𝑑𝑑𝑟(0). A user can generate and use any number of ad-
dress key pairs.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/24

Decentralized anonymous payment schemes

Re-design minting to allow for greater functionality. To mint a coin
c of a desired value v, the user μ first samples p, which is a secret
value that determines the coin’s serial number as sn := 𝑃𝑅𝐹𝑎𝑝𝑘𝑠𝑛(𝜌).
Then, μ commits to the tuple (apk, v,p) in two phases: (a) u com-
putes k := COMMr(apk|| 𝜌) for a random r; and then (b) u computes
cm := COMMs(v||k) for a random s. The minting results in a coin c
:= (apk, ϑ, ρ, r, s, cm) and a mint transaction 𝑡𝑥𝑀𝑖𝑛𝑡 = (ϑ, k, s, cm).
Crucially, due to the nested commitment, anyone can verify that
cm in 𝑡𝑥𝑀𝑖𝑛𝑡 is a coin commitment of a coin of value v (by checking
that COMMs(ϑ||k) equals cm) but cannot discern the owner (by
learning the address key apk) or serial number (derived from p) be-
cause these are hidden in k. As before, 𝑡𝑥𝑀𝑖𝑛𝑡 is accepted by the
ledger only if u deposits the correct amount, in this case v CRYP.

Coins are spent using the pour operation, which takes a set of in-
put coins, to be consumed, and “pours” their value into a set of
fresh output coins — such that the total value of output coins
equals the total value of the input coins.  
 
Suppose that μ, with address key pair (𝑎𝑝𝑘𝑜𝑙𝑑, 𝑎𝑠𝑘𝑜𝑙𝑑), wishes to con-

sume his coin cold = (𝑎𝑝𝑘𝑜𝑙𝑑, 𝑎𝑠𝑘𝑜𝑙𝑑,pold,rold,sold, cmold) and produce

two new coins 𝑐1𝑛𝑒𝑤 and 𝑐2𝑛𝑒𝑤 , with total valueϑ1𝑛𝑒𝑤+ϑ2𝑛𝑒𝑤=ϑ𝑜𝑙𝑑, re-

spectively targeted at address public keys 𝑎𝑝𝑘1𝑛𝑒𝑤 and 𝑎𝑝𝑘2𝑛𝑒𝑤. (The

addresses 𝑎𝑝𝑘1𝑛𝑒𝑤and 𝑎𝑝𝑘2𝑛𝑒𝑤 may belong to μ or to some other
user.) The user μ, for each i ∈ {1, 2}, proceeds as follows: (i) μ sam-
ples serial number randomness pnew; (ii) μ computes 𝑘𝑖𝑛𝑒𝑤 := COM

Mrnew(𝑎𝑝𝑘𝑖𝑛𝑒𝑤||𝑝𝑖𝑛𝑒𝑤) for a random 𝑟𝑖𝑛𝑒𝑤; and (iii) μ computes 𝑐𝑚𝑖𝑛𝑒𝑤:=  

COMMrnew(ϑ𝑖𝑛𝑒𝑤||𝑘𝑖𝑛𝑒𝑤) for a random s𝑖𝑛𝑒𝑤.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/25

Decentralized anonymous payment schemes

This yields the coins c1𝑛𝑒𝑤=(𝑎𝑝𝑘1𝑛𝑒𝑤,ϑ1𝑛𝑒𝑤,𝑝1𝑛𝑒𝑤,𝑟1𝑛𝑒𝑤,𝑠1𝑛𝑒𝑤,𝑐𝑚1𝑛𝑒𝑤) and

c2𝑛𝑒𝑤=(𝑎𝑝𝑘2𝑛𝑒𝑤,ϑ2𝑛𝑒𝑤,𝑝2𝑛𝑒𝑤,𝑟2𝑛𝑒𝑤,𝑠2𝑛𝑒𝑤,𝑐𝑚2𝑛𝑒𝑤)

Next, μ produces a zk-SNARK proof n POOR for the following NP
statement, which they call POUR:

“Given the Merkle-tree root rt, serial number snold, and coin commit-
ments 𝑐𝑚1𝑛𝑒𝑤, 𝑐𝑚2𝑛𝑒𝑤, I know coins

cold, 𝑐1𝑛𝑒𝑤, 𝑐2𝑛𝑒𝑤, and address secret key 𝑎𝑠𝑘𝑜𝑙𝑑 such that:

• The coins are well-formed: for cold it holds that kold = COMMrold (aold| |pold)
and cmold = COMMsold(vold| |kold); and similarly for 𝑐1𝑛𝑒𝑤, and 𝑐2𝑛𝑒𝑤,.

• The address secret key matches the public key: 𝑎𝑝𝑘𝑜𝑙𝑑 = 𝑃𝑅𝐹apk(𝑜𝑙𝑑)𝑎𝑑𝑑𝑟(0).

• The serial number is computed correctly: snold := 𝑃𝑅𝐹apk(𝑜𝑙𝑑)𝑠𝑛 (pold).

• The coin commitment cmold appears as a leaf of a Merkle- tree with root
rt.

• The values add up: ϑ1𝑛𝑒𝑤+ϑ2𝑛𝑒𝑤=ϑ𝑜𝑙𝑑

A resulting pour transaction txPour := (rt, snold, cmnew, cm2𝑛𝑒𝑤, πPOUR)
is appended to the ledger. (As before, the transaction is rejected if
the serial number sn appears in a previous transaction.)

Now suppose that μ does not know, say, the address secret key 𝑎𝑠

𝑘1𝑛𝑒𝑤 that is associated with the public key 𝑎𝑝𝑘1𝑛𝑒𝑤. Then, μ cannot
spend c1𝑛𝑒𝑤, because he cannot provide 𝑎𝑠𝑘1𝑛𝑒𝑤 as part of the wit-
ness of a subsequent pour operation. Furthermore, when a user
that knows 𝑎𝑠𝑘1𝑛𝑒𝑤 does spend c1𝑛𝑒𝑤, the user μ cannot track it, be-
cause he knows no information about its revealed serial number,
which is sn1𝑛𝑒𝑤:= 𝑃𝑅𝐹ask(𝑛𝑒𝑤)𝑠𝑛 (pnew).

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/26

Decentralized anonymous payment schemes

Also observe that txPour reveals no information about how the value
of the consumed coin was divided among the two new fresh coins,
nor which coin commitment corresponds to the consumed coin,
nor the address public keys to which the two new fresh coins are
targeted. The payment was conducted in full anonymity.

More generally, a user may pour Nold ≥ 0 coins into Nnew ≥0 coins.
For simplicity they consider the case Nold = Nnew = 2, without loss
of generality. Indeed, for Nold < 2, the user can mint a coin with
value 0 and then provide it as a “null” input, and for Nnew < 2, the
user can create (and discard) a new coin with value 0. For Nold > 2
or Nnew > 2, the user can compose logNold + log Nnew of the 2-
input/2-output pours.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/27

Decentralized anonymous payment schemes

Step 4: sending coins.  
Suppose that 𝑎𝑝𝑘1𝑛𝑒𝑤 is the address public key of up. In order to al-
low up to actually spend the new coin cnew produced above, μ
must somehow send the secret values in cnew to up. One way is for
u to send up a private message, but the requisite private communi-
cation channel necessitates additional infrastructure or assump-
tions. They avoid this “out-of-band” channel and instead build this
capability directly into construction by leveraging the ledger as fol-
lows.

Modify the structure of an address key pair. Each user now has a
key pair (addrpk, addrsk), where addrpk = (𝑎𝑝𝑘,𝑝𝑘𝑒𝑛𝑐) and addrsk -  

(𝑎𝑠𝑘,𝑠𝑘𝑒𝑛𝑐) are generated as before. In addition, (pkenc, skenc) is a key
pair for a key-private encryption scheme. 
 
Then, μ computes the ciphertext Cp that is the encryption of the
plaintext (ϑ1𝑛𝑒𝑤,𝑝1𝑛𝑒𝑤,𝑟1𝑛𝑒𝑤,𝑠1𝑛𝑒𝑤), under 𝑝𝑘𝑒𝑛𝑐1𝑛𝑒𝑤 (which is part of up’s

address public key 𝑎𝑑𝑑𝑟𝑠𝑘1𝑛𝑒𝑤), and includes Cp in the pour transac-
tion txPour. The user u1 can then find and decrypt this message (us-
ing his 𝑠𝑘𝑒𝑛𝑐1𝑛𝑒𝑤) by scanning the pour transactions on the public
ledger. Again, note that adding Cp to txPour leaks neither paid
amounts, nor target addresses due to the key-private property of
the encryption scheme. (The user μ does the same with c2new and
includes a corresponding ciphertext C2 in txPour.)

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/28

Decentralized anonymous payment schemes

Step 5: public outputs  
The construction so far allows users to mint, merge, and split
coins. But how can a user redeem one of his coins, i.e., convert it
back to the base currency. For this, modify the pour operation to
include a public output. When spending a coin, the user u also
specifies a nonnegative vpub and an arbitrary string info. The bal-
ance equation in the NP statement POUR is changed accordingly:
“ϑ1𝑛𝑒𝑤 + ϑ2𝑛𝑒𝑤+ ϑ𝑝𝑢𝑏 = ϑ𝑜𝑙𝑑. Thus, of the input value ϑ𝑜𝑙𝑑, a partϑ𝑝𝑢𝑏 is
publicly declared, and its target is specified, somehow, by the
string info. The string info can be used to specify the destination of
these redeemed funds (e.g., a Bitcoin wallet public key). Both ϑ𝑝𝑢𝑏
and info are now included in the resulting pour transaction txPour.
(The public output is optional, as the user u can set vpub = 0.)

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/29

Decentralized anonymous payment schemes

Step 6: Non-Malleability  
To prevent malleability attacks on a pour transaction txPour (e.g.,
embezzlement by re-targeting the public output of the pour by
modifying info), they further modify the NP statement POUR and
use digital signatures. Specifically, during the pour operation, the
user u (i) samples a key pair (pksig, sksig) for a one-time signature
scheme; (ii) computes hSig := CRH(pksig); (iii) computes the two  
values  
 
h1 := 𝑃𝑅𝐹𝑎𝑠𝑘1𝑜𝑙𝑑𝑝𝑘 (hSig) and

h2 := 𝑃𝑅𝐹𝑎𝑠𝑘2𝑜𝑙𝑑𝑝𝑘 (hSig), which act as MACs to “tie” hSig to both ad-
dress secret keys; (iv) modifies POUR to include the three values
hSig, hp, h2 and prove that the latter two are computed correctly;
and (v) uses sksig to sign every value associated with the pour op-
eration, thus obtaining a signature CT, which is included, along
with pksig, in txPour. Since the 𝑎𝑠𝑘𝑖𝑜𝑙𝑑 are secret, and with high prob-
ability hSig changes for each pour transaction, the values h1, h2 are
unpredictable. Moreover, the signature on the NP statement (and
other values) binds all of these together.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/30

zk-SNARKs

A zk-SNARK is a non-interactive zero-knowledge proof of knowl-
edge that is succinct, i.e., for which proofs are very short and easy
to verify. More precisely, let L be an NP language, and let C be a
nondeterministic decision circuit for L on a given instance size n. A
zk-SNARK can be used to prove and verify membership in L, for in-
stances of size n, as follows. After taking C as input, a trusted
party conducts a one-time setup phase that results in two public
keys: a proving key pk and a verification key vk. The proving key
pk enables any (untrusted) prover to produce a proof n attesting to
the fact that x e L, for an instance x (of size n) of his choice. The
non-interactive proof n is zero knowledge and a proof of knowl-
edge. Anyone can use the verification key vk to verify the proof n;
in particular zk-SNARK proofs are publicly verifiable: anyone can
verify n, without ever having to interact with the prover that gener-
ated n. Succinctness requires that (for a given security level) n has
constant size and can be verified in time that is linear in |x| (rather
than linear in |C|).

The main cryptographic primitive used in this paper is a special
kind of Succinct Non-interactive ARgument of Knowledge
(SNARK). Concretely, for this using a publicly-verifiable preprocess-
ing zero-knowledge SNARK, or zk-SNARK for short.

The main cryptographic primitive used in this paper is a special
kind of Succinct Non-interactive ARgument of Knowledge
(SNARK). Concretely, it’s using a publicly-verifiable preprocessing
zero-knowledge SNARK, or zk-SNARK for short.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/31

zk-SNARKs

Informal definition

For a field F, an F-arithmetic circuit takes inputs that are elements
in F, and its gates output elements in F. To model nondeterminism
they consider circuits that have an input x ∈ Fn and an auxiliary in-
put a ∈ Fh, called a witness. The circuits they consider only have  
bilinear gates. Arithmetic circuit satisfiability is defined analogously
to the boolean case, as follows.

Definition II.1. The arithmetic circuit satisfiability problem of an  
F-arithmetic circuit C: Fn x Fh → Fi is captured by the relation

Re = {(x, a) ∈ Fn x Fh : C(x, a) = 0l}; its language is Lc = {x ∈ Fn : ⁆ a ∈
Fh s.t. C(x,a) = 0l}.

Given a field F, a (publicly-verifiable preprocessing) zk-SNARK for
F-arithmetic circuit satisfiability is a triple of polynomial-time algo-
rithms (KeyGen, Prove, Verify):

• KeyGen(1λ,C)→ (pk, vk). On input a security parameter λ (pre-
sented in unary) and an F-arithmetic circuit

C, the key generator KeyGen probabilistically samples a proving
key pk and a verification key vk. Both keys are published as public
parameters and can be used, any number of times, to prove/verify
membership in Le.

• Prove (pk, x, a) →π. On input a proving key pk and any (x,a) ∈ Rc,
the prover Prove outputs a non-interactive proof π for the state-
ment x ∈ Le.

• Verify (vk, x, π) → b. On input a verification key vk, an input x,
and a proof n, the verifier Verifes outputs b =1 if he is convinced
that x ∈ Le.  

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/32

zk-SNARKs

Completeness. For every security parameter λ, any F- arithmetic
circuit C, and any (x,a) ∈ Re, the honest prover can convince the
verifier. Namely, b =1 with probability 1 — negl(λ) in the following
experiment: (pk, vk) ← KeyGen (1λ, C); π ← Prove (pk, x, a);

b ← Verify(vk, x, n).

Succinctness. An honestly-generated proof n has Oλ(1) bits and
Verify(vk, x, π) runs in time Oλ(|x|). (Here, Oλ hides a fixed polyno-
mial factor in λ.)

Proof of knowledge (and soundness). If the verifier accepts a
proof output by a bounded prover, then the prover “knows” a wit-
ness for the given instance. (In particular, soundness holds against
bounded provers.) Namely, for every poly(λ)- size adversary A,
there is a poly (λ)-size extractor E such that Verify(vk, x, n) = 1 and
(x, a) 0 with probability negl (λ) in the following experiment:

(pk,vk) ← KeyGen (1λ,C); (x,π) ← λ (pk, vk); a ← έ (pk, vk).  
 
Perfect zero knowledge. An honestly-generated proof is perfect
zero knowledge. Namely, there is a poly (λ)-size simulator Sim
such that for all stateful poly(λ)-size distinguishers D the following
two probabilities are equal:

• The probability that D (π) = 1 on an honest proof.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/33

• The probability that D(n) = 1 on a simulated proof.  

Known constructions and security

Security of zk-SNARKs is based on knowledge-of-exponent as-
sumptions and variants of Diffie-Hellman assumptions in bilinear
groups. While knowledge-of-exponent assumptions are fairly
strong, there is evidence that such assumptions may be inherent
for constructing zk-SNARKs.

zk-SNARK implementations

There are three published implementations of zk-SNARKs: (i)
Parno et al. Present an implementation of zk-SNARKs for pro-
grams having no data dependencies; (ii) Ben-Sasson et al. present
an implementation of zk-SNARKs for arbitrary programs (with data
dependencies); and (iii) Ben- Sasson et al. present an implementa-
tion of zk-SNARKs that supports programs that modify their own
code (e.g., for runtime code generation); their implementation also
reduces costs for programs of larger size and allows for universal
key pairs.

Each of the works above also achieves zk-SNARKs for arithmetic
circuit satisfiability as a stepping stone towards their respective
higher-level efforts. the implementation of provides 128 bits of se-
curity, and the field F is of a 256-bit prime order p.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/34

Cryptographic building blocks

Collision-resistant hashing. It’s use a collision-resistant hash func-
tion CRH : {0,1}* =→ {0,1}O(λ).

Pseudorandom functions. It’s use a pseudorandom function fam-
ily PRF = {PRFx: {0,1}* →{0,1}O(λ)}x where x denotes the seed.
From PRFx, it’s derive three “non-overlapping” pseudorandom
functions, chosen arbitrarily as 𝑃𝑅𝐹xaddr (z) := PRFx (00||z), 𝑃𝑅𝐹xsn

(z) := PRFx (01||z), 𝑃𝑅𝐹xpk:= PRFx(10||z). Furthermore, it’s assume
that PRFsn is also collision resistant, in the sense that it is  
infeasible to find (x, z) ≠ (x',z') such that 𝑃𝑅𝐹xsn (z) = 𝑃𝑅𝐹x′sn (z').

Statistically-hiding commitments. It’s use a commitment
scheme COMM where the binding property holds computation-
ally, while the hiding property holds statistically. It is denoted
{COMMx : {0,1}* → {0,1}O(λ)}x where x denotes the commitment
trapdoor. Namely, to reveal a commitment cm to a value z, it suf-
fices to provide z and the trapdoor x; then one can check that cm =
COMMx(z).  

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/35

One-time strongly-unforgeable digital signatures.

One-time strongly-unforgeable digital signatures. It’s use a digital
signature scheme Sig = (Gsig, Ksig, Ssig, Vsig) that works as fol-
lows.

• Gsig(1λ) → ppsig. Given a security parameter λ (presented in
unary), Gsig samples public parameters ppenc for the encryption
scheme.

• Ksig(ppsig) → (pksig,skSig). Given public parameters ppsig, Ksig  
samples a public key and a secret key for a single user.

• Ssig(sksig, m) → a. Given a secret key sksig and a message m, Ssig
signs m to obtain a signature σ.

• Vsig(pksig, m, σ) → b. Given a public key pksig, message m, and
signature σ, Vsig outputs b =1 if the signature σ is valid for  
message m; else it outputs b = 0.

The signature scheme Sig satisfies the security property of one-
time strong unforgeability against chosen-message attacks  
(SUF-1CMA security).

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/36

Key-private public-key encryption.

It’s use a public-key encryption scheme Enc = (Genc, Kenc, Eenc,
Denc) that works as follows.

• Genc(1λ) → ppenc. Given a security parameter λ (presented in
unary), Genc samples public parameters ppenc for the encryption
scheme.

• Kenc(ppenc) → (pkenc, skenc). Given public parameters ppenc, Kenc
samples a public key and a secret key for a single user.

• Eenc(pkenc, m) →c. Given a public key pkenc and a message m,
Eenc encrypts m to obtain a ciphertext c.

• Denc(skenc, c) → m. Given a secret key skenc and a ciphertext c,
Denc decrypts c to produce a message m  
(or X if decryption fails).

The encryption scheme Enc satisfies two security properties:  
(i) ciphertext indistinguishability under chosen-ciphertext attack
(IND-CCA security); and (ii) key indistinguishability under chosen-
ciphertext attack (IK-CCA security). While the first property is stan-
dard, the second is less known; informally, IK-CCA requires that
ciphertexts cannot be linked to the public key used to encrypt
them, or to other ciphertexts encrypted with the same public key.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/37

zk-SNARKs for pouring coins

As outlined in Section I-B, construction invokes a zk-SNARK for a
specific NP statement, POUR. It’s first recall the context motivat-
ing POUR. When a user μ pours “old” coins 𝑐1𝑜𝑙𝑑, 𝑐2𝑜𝑙𝑑 into new
coins 𝑐1𝑛𝑒𝑤, 𝑐2𝑛𝑒𝑤, a corresponding pour transaction

txpour = (rt, 𝑠𝑛1𝑜𝑙𝑑, 𝑠𝑛2𝑜𝑙𝑑, 𝑐𝑚1𝑛𝑒𝑤, 𝑐𝑚2𝑛𝑒𝑤,ϑpub, info,*)

is generated. . Concretely, txPour should demonstrate that (i) μ
owns 𝑐1𝑜𝑙𝑑, 𝑐2𝑜𝑙𝑑; (ii) coin commitments for 𝑐1𝑜𝑙𝑑, 𝑐2𝑜𝑙𝑑 appear some-
where on the ledger; (iii) the revealed serial numbers 𝑠𝑛1𝑜𝑙𝑑, 𝑠𝑛2𝑜𝑙𝑑
are of 𝑐1𝑜𝑙𝑑, 𝑐2𝑜𝑙𝑑 (iv) the revealed coin commitments 𝑐𝑚1𝑛𝑒𝑤, 𝑐𝑚2𝑛𝑒𝑤
are of 𝑐1𝑛𝑒𝑤, 𝑐2𝑛𝑒𝑤

(v) balance is preserved. Construction achieves this by including a
zk-SNARK proof πPOUR for the statement POUR which checks the
above invariants (as well as others needed for non-malleability).

The statement POUR  
Concretely, the NP statement POUR is defined as follows.

• Instances are of the form X = (rt, 𝑠𝑛1𝑜𝑙𝑑, 𝑠𝑛2𝑜𝑙𝑑, 𝑐𝑚1𝑛𝑒𝑤, 𝑐𝑚2𝑛𝑒𝑤, ϑpub,
hSig, h1, h2). Thus, an instance x specifies a root rt for a  
CRH-based Merkle tree (over the list of commitments so far), the
two serial numbers of the consumed coins, two coin commit-
ments for the two new coins, a public value, and fields hSig, h1, h2
used for non-malleability.

Witnesses are of the form a = (path1, path2, 𝑐1𝑜𝑙𝑑, 𝑐2𝑜𝑙𝑑, 𝑎𝑑𝑑𝑟𝑠𝑘1𝑜𝑙𝑑,  
𝑎𝑑𝑑𝑟𝑠𝑘2𝑜𝑙𝑑, 𝑐1𝑛𝑒𝑤,𝑐2𝑛𝑒𝑤) where, for each I ∈ e {1, 2}: .

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/38

Thus, a witness a specifies authentication paths for the two new
coin commitments, the entirety of coin information about both the
old and new coins, and address secret keys for the old coins.

Given a POUR instance X, a witness a is valid for X if the following
holds:

1) For each i∈ e {1,2}:

a) The coin commitment 𝑐𝑚1𝑛𝑒𝑤 of 𝑐𝑖𝑜𝑙𝑑 appears on the ledger, i.e.,
pathi is a valid authentication path for leaf 𝑐𝑚𝑖𝑛𝑒𝑤 with respect to
root rt, in a CRH-based Merkle tree.

b) The address secret key 𝑎𝑠𝑘𝑖𝑜𝑙𝑑 matches the address public key
of 𝑐𝑖𝑜𝑙𝑑, i.e., apd = 𝑃𝑅𝐹𝑎𝑠𝑘𝑖𝑎𝑑𝑑𝑟old(0).

c) The serial number 𝑠𝑛𝑖𝑜𝑙𝑑 of 𝑐𝑖𝑜𝑙𝑑 is computed correctly, i.e., 𝑠𝑛𝑖𝑜𝑙𝑑 =
𝑃𝑅𝐹𝑎𝑠𝑘𝑖𝑜𝑙𝑑𝑠𝑛𝑜𝑙𝑑(𝑝𝑖𝑜𝑙𝑑,)

d) The coin 𝑐𝑖𝑜𝑙𝑑 is well-formed, i.e., 𝑐𝑚𝑖𝑜𝑙𝑑 COMMsold  
(a𝑝𝑘,𝑖𝑜𝑙𝑑||𝑝 𝑖𝑜𝑙𝑑||𝜗𝑖𝑜𝑙𝑑).

e) The coin 𝑐𝑖𝑛𝑒𝑤 is well-formed, i.e., 𝑐𝑚𝑖𝑛𝑒𝑤 COMMsnew  
(a𝑝𝑘,𝑖𝑛𝑒𝑤||𝑝 𝑖𝑛𝑒𝑤||𝜗𝑖𝑛𝑒𝑤).

f) The address secret key a𝑝𝑘,𝑖𝑜𝑙𝑑 ties ℎ𝑠𝑖𝑔 to ℎ𝑖=𝑃𝑅𝐹𝑎𝑠𝑘𝑖𝑠𝑘old(ℎ𝑠𝑖𝑔)

g) Balance is reserved: ϑ1𝑛𝑒𝑤+ϑ2𝑛𝑒𝑤+ϑpub=ϑ1𝑜𝑙𝑑+ϑ2𝑜𝑙𝑑(𝑤𝑖𝑡ℎ ϑ1𝑜𝑙𝑑+ϑ2𝑜

𝑙𝑑 ≥0 𝑎𝑛𝑑 ϑ1𝑜𝑙𝑑+ϑ2𝑜𝑙𝑑≤ϑmax).

Recall that in this paper zk-SNARKs are relative to the language of
arithmetic circuit satisfiability thus, in POUR via an arithmetic  
circuit, denoted CPOUR. In particular, the depth dtree of the Merkle
tree needs to be hardcoded in CPOUR, and it a parameter of con-
struction (see below); the maximum number of supported coins is
then 2dtree.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/39

ZeroCash  
Zerocash is a concrete implementation, at 128 bits of security, of
DAP scheme construction. Zerocash entails carefully instantiating
the cryptographic ingredients of the construction to ensure that
the zk-SNARK, the “heaviest” component, is efficient enough in
practice. In the construction, the zk-SNARK is used to prove/
verify a specific NP statement: POUR. While zk-SNARKs are as-
ymptotically efficient, their concrete efficiency depends on the
arithmetic circuit C that is used to decide the NP statement. Thus,
a search of instantiations was made for which can be designed a
relatively-small arithmetic circuit CPOUR for verifying the NP state-
ment POUR.

Instantiation of building blocks

CRH, PRF, COMM from SHA256. Let H be the SHA256 compres-
sion function, which maps a 512-bit input to a 256-bit output.
Rely on H, rather than the “full” hash, since this suffices for fixed-
size single-block inputs, and it simplifies the construction of
CPOUR. Instantiate CRH, PRF, COMM via H (under suitable  
assumptions on H).

First, instantiate the collision-resistant function CRH as H(z) for z ∈
{0,1}512; this function compresses “two-to-one”, so it can be used
to construct binary Merkle trees.

Next, instantiate the pseudorandom function PRFx(z) as H(x‖z),
with x ∈ {0,1}256 as the seed, and z ∈ {0,1}256 as the input. Thus,
the derived functions are:

PRFxaddr(z) := H(x‖00‖z), PRFxsn(z) := H(x‖01‖z), PRFxpk(z) :=
H(x‖10‖z) ,

with x ∈ {0,1}256 and z ∈ {0,1}254.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/40

As for the commitment scheme COMM, it only used in the follow-
ing pattern:

k := COMMr(apk‖p) ,

cm := COMMs(v‖k) .

Due to instantiation of PRF, apk is 256 bits. So p also can be set to
256 bits and r to 256 + 128 = 384 bits; then it is possible to  
compute

k := COMMr(apk‖p) as H(r‖[H(apk‖p)]128) .

Above, [·]128 denotes the truncating of the 256-bit string to 128
bits (by dropping least- significant bits, as in the implementation).
Heuristically, for any string z ∈ {0,1}128, the distribution induced by
H(r‖z) is 2-128 close to uniform, and this forms the basis of the
statistically-hiding property. For computing cm, set coin values to
be 64-bit integers (so that, in particular, vmax = 264 — 1 in the im-
plementation), and then compute

cm := COMMs(v‖k) as H(k‖0192‖v) .

Noticeably, the above commitment randomness s is ignored. The
reason is that already known that k, being the output of a
statistically-hiding commitment, can serve as randomness for the
next commitment scheme.

Instantiating the NP statement POUR. The above choices imply
a concrete instantiation of the NP statement POUR. Specifically,
in the implementation, POUR checks that the following holds, for
each i ∈ {1, 2}:

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/41

• pathi is an authentication path for leaf cmiold with respect to root
rt, in a CRH-based Merkle tree;

• apk,iold = H(ask,iold|0256);

• sniold = H(ask,iold ‖01‖[piold]254);

• cmiold = H(H(riold‖[H(apk,iold ‖piold)]128)‖0192‖viold);

• cmi"ew = H(H(rinew‖[H(apk,inew ‖pinew)]128)‖0192‖vinew); and

• hi = H(ask,iold ‖10|bi ‖[hSig]253) where b1 := 0 and b2 := 1.

Moreover, POUR checks that v1new + v2new + vpub = v1old + v2old,
with v1old , v2old > 0 and v1old + v2old < 264.

Finally, as mentioned, in order for CPOUR to be well-defined, need
to fix a Merkle-tree depth dtree. In the implementation, fix dtree =
64, and thus support up to 264 coins.

Instantiating Sig. For the signature scheme Sig, the ECDSA is
used. However, standard ECDSA is malleable: both (r, s) and (r, -
s) verify as valid signatures. A non-malleable variant is used,
where s is restricted to the “lower half” of field elements.

Instantiating Enc. For the encryption scheme Enc, the key-
private Elliptic-Curve Integrated Encryption Scheme (ECIES) id
used; it is one of the few standardized key-private encryption
schemes with available implementations. 
 
Arithmetic circuit for pouring coins

DAP scheme construction also requires zk-SNARKs relative to the
NP statement POUR. These are obtained by invoking a zk-SNARK
for arithmetic circuit satisfiability on an arithmetic circuit CPOUR,
which verifies the NP statement POUR.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/42

An arithmetic circuit for verifying SHA256’s compression func-
tion. The vast majority of the “verification work” in POUR is verify-
ing computations of H, the compression function of SHA256.
Thus, begin with construction of an arithmetic circuit CH for verify-
ing SHA256 computations. Need to construct an arithmetic circuit
CH such that, for every 256-bit digest h and 512-bit input z, (h,z) ∈
RcH if and only if h = H(z). Naturally, goal is to minimize the size of
CH. The strategy is to construct CH, piece by piece, by closely fol-
lowing the SHA256 official specification. For each subcomputa-
tion of SHA256, nondeterminism and field operations are used to
verify the subcomputation using as few gates as possible.

Overview of SHA256’s compression function. The primitive unit
in SHA256 is a 32-bit word. All subcomputations are simple word
operations: three bitwise operations (and, or, xor), shift-right,
rotate-right, and addition modulo 232. The compression function
internally has a state of 8 words, initialized to a fixed value, and
then transformed in 64 successive rounds by following the 64-
word message schedule (deduced from the input z). The 256-bit
output is the concatenation of the 8 words of the final state.

Representing a state. For each word operation (except for addi-
tion modulo 232), it is more efficient to verify the operation when
its inputs are represented as separate wires, each carrying a bit.
Thus, CH maintains the 8-word state as 256 individual wires, and
the 64-word message schedule as 64· 32 wires.  
 
Addition modulo 32. To verify addition modulo 232 the following
technique is used. Given two words A and B, need to compute:

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/43

Because F has characteristic larger than 233, there is no wrap
around; thus, field addition coincides with integer addition. Then
make a non-deterministic guess for the 33 bits ai of a (including
carry), and enforce consistency by requiring that:  
 

To ensure that each ai ∈ {0,1}, use a 33-gate subcircuit computing
ai(ai - 1), all of which must be 0 for the subcircuit to be satisfiable.
Overall, verifying addition modulo 232 only requires 34 gates. This
approach extends in a straightforward way to summation of more
than two terms.

Verifying the SHA256 message schedule. The first 16 words Wi

of the message schedule are the 16 words of the 512-bit input z.
The remaining 48 words are computed as Wt := a1(Wt-2) + Wt-7 +
ao(Wt-15) + Wt-16, where a0(W) := rotr7(W) ⊕ rotr18(W) ⊕ shr3(W) and
a1 has the same structure but different rotation and shift con-
stants.

The rotation and shift amounts are constants, so rotates and
shifts can be achieved by suitable wiring to previously computed
bits (or the constant 0 for high-order bits in shr). Thus, since the
XOR of 3 bits can be computed using 2 gates, both a0 and a1 can
be computed in 64 gates. Then compute (or more precisely, guess
and verify) the addition modulo 232 of the four terms.

Verifying the SHA256 round function. The round function modi-
fies the 8-word state by changing two of its words and then per-
muting the 8-word result.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/44

Each of the two modified words is a sum modulo 232 of (i) round-
specific constant words Kt; (ii) message schedule words Wt; and
(iii) words obtained by applying simple functions to state words.
Two of those functions are bitwise majority (Maj(A, B, C)i = 0 if Ai +
Bi + Ci < 1 else 1) and bitwise choice (Ch(A,B,C)i = Bi if Ai = 1, else
Ci). Need to verify correct computation of Maj using 2 gates per
output bit, and Ch with 1.

Then, instead of copying 6 unchanged state words to obtain the
permuted result, make the permutation implicit in the circuit’s wir-
ing, by using output wires of previous sub-computations (some-
times reaching 4 round functions back) as input wires to the cur-
rent sub-computation.  
 
Arithmetic circuit for POUR

The NP statement POUR requires verifying membership in a Mer-
kle tree based on H, a few additional invocations of H, and integer
addition and comparison. Need to construct the circuit CPOUR for
POUR by combining various subcircuits verifying each of these.
There remains to to discuss the subcircuits for verifying member-
ship in a Merkle tree (using the aforementioned subcircuit CH for
verifying invocations of H), and integer addition and comparison.  
 

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/45

Merkle tree membership.  
Need to construct an arithmetic circuit that, given a root rt, authen-
tication path and coin commitment cm, is satisfied if and only if
path is a valid authentication path for the leaf cm with respect to
the root rt. The authentication path path includes, for each layer i,
an auxiliary hash value hi and a bit ri specifying whether hi was the
left (ri = 0) or the right (ri = 1) child of the parent node. Then check
membership in the Merkle tree by verifying invocations of H,
bottom-up. Namely, for d = 64, set kd-1 = cm; then, for each i = d-
1,..., 1, set Bi = hi ‖ ki if ri = 0 else ki ‖ hi , and compute ki-1 = H(Bi).
Finally check that the root k0 matches the given root rt.

Integer addition.  
Need to construct an arithmetic circuit that, given 64-bit integers
A,B,C (presented as binary strings), is satisfied if and only if C = A
+ B over the integers. Again relying on the fact that F’s characteris-
tic is sufficiently large, do so by checking that:  
 

this is enough, because there is no wrap around.

Integer comparison  
Need to construct an arithmetic circuit that, given two 64-bit inte-
gers A, B (represented in binary), is satisfied if and only if A + B
fits in 64 bits (i.e. A + B < 264). Do so by checking that

for some ci ∈ {0,1}. Indeed, if A + B < 264 then it suffices to take ci

as the binary representation of A + B.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/46

However, if A + B > 264 then no choice of ci can satisfy the con-
straint as:

Overall, this requires 65 gates (1 gate for the equality check, and
64 gates for ensuring that c0,... ,c63 are boolean).  

Overall circuit sizes.  
See Figure for the size of CPOUR. More than 99% of the gates are
devoted to verifying invocations of H.  
 

 
Figure: Size of the circuit CPOUR, which verifies the statement
POUR.construct

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/47

 
Figure: Construction of a DAP scheme using zk-SNARKs and
other ingredients

48
TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/

Technology Roadmap

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/49

Roadmap (Future Plans)

CrypticCoin will be constantly improved by implementing new fea-
tures and expanding its ecosystem. Such continuous development
is performed by the core development team that consists of sev-
eral permanent contributors. The development of the following
tasks are scheduled:

- Forum platform that allows users to suggest any ideas that will be useful for the
CrypticCoin community. Such ideas will be assessed by the community through a vot-
ing mechanism within the CrypticCoin forum. The ideas selected by the voting will be
crowdfunded and implemented.

- Official mining pool that will support mining based on any of 5 Proof-of-Work hash-
ing algorithms used in CrypticCoin (Scrypt, Blake2s, X17, Myr-Groestl and Ly-
ra2REv2).

- Unique and easy to use mobile wallets for Android and iOS platforms. For Cryptic-
Coin participants, these wallets will be as user-friendly as possible.

- Wallets with built-in I2p integration. The wallets have improved anonymity features
and will be offered to CryptoCoin users for more robust IP obfuscation.

- Encrypted p2p chat between CrypticCoin network members. Instant messaging sys-
tem that ensures encryption and privacy of P2P (Peer-to-Peer) communications.

- RSK smart contracts integration. RSK (Rootstock) is a two-way pegged sidechain
that extends CrypticCoin by adding the smart contracts functionality.

- Launching the company for the debit cards connecting the virtual card and plastic
card. Issuing the debit cards, which will support fiat currencies (EUR, USD, etc.), the
CrypticCoin, other cryptocurrencies and will have native exchange capability be-
tween supported currencies. CrypticCoin development roadmap is presented below.

The roadmap can be slightly changed by adding additional tasks and rescheduling cur-
rent and new tasks.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/50

Roadmap (Future Plans)

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/51

Roadmap (Future Plans)

 
Website Transaction Inclusion 
Our intention is for early adopters to have increasing options for
spending and also expanding the CrypticCoin community. In the
future we would like more websites to accept CRYP as another
form of payment. Currently a few sites (Etsy/Overstock) chose to
accept only certain cryptocurrencies, but this is also an opportu-
nity for vendors to add a revenue stream.

Marketplace creation:

Push for acceptance of CRYP online and offline. CrypticCoin has
plans for working with vendors to utilize the token as a means of
exchange.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/52

Roadmap (Future Plans)

 

This diagram shows the expansion of the market from exploration
and investment all the way to maturity. Most are not aware that we
are in an early adoption mode.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/53

Roadmap (Future Plans)

 

Featured here is another diagram showing where we are currently in the Blockchain
space. CrypticCoin is in position for the best time for growth and expansion of block-
chain technology. This timeline featured here is simply the Development timeline
of BLOCKCHAIN TECHNOLOGY IN GENERAL, and not specifically CrypticCoin.

TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/54

Privacy Coin Comparison

The privacy coin comparison above articulates a brief comparison between  
CrypticCoin and many other existing privacy coin options in the market. It is our be-
lief that CrypticCoin will grow and evolve to stand toe-to-toe and even surpass the
coins featured in this list.

55
TECHNICAL OVERVIEW
WHITEPAPER
https://crypticcoin.io/

