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Abstract 
DeFi projects have a problem; they cannot calculate and manage risk because they are not 

using an oracle with controllable and computable risk. The NEST oracle solves this problem by 

providing a reliable price feed with a computable risk factor that does not rely on centralized 

infrastructure. By using the NEST oracle, we can provide an entirely new DEX, CoFiX, that brings 

reliable prices and a computable risk factor for traders and market makers. This article will discuss 

the background of DEX's today, explain in detail the works of our new DEX, CoFiX, and how we 

expect it to become an essential product in the space.  

1 Background 
Decentralized exchanges have always been the focus of the blockchain industry and for a good reason: 

they provide anonymity, fairness, ease of use, and openness.  

While decentralized exchanges today are a step in the right direction, they are limited by on-chain 

performance barriers such as computing power, storage and communication shortfalls. They are also 

limited by the blockchain's technical characteristics like the time per block (in the real world or another 

digital system, time is almost continuous, but in a blockchain system, the smallest unit of time is a block, 

e.g., the smallest unit of time in Ethereum is around 14s).

Exchanges based on an Order Book model using centralized computing platforms are all more

performant than on-chain decentralized services and can generate more accurate pricing, better efficiency, 

and lower costs. Today, assets with high liquidity and transaction volume (such as ETH and BTC) are much 

better suited to centralized exchanges. DEX's need a new model other than the Order Book model.  In this 

paper, we take ETH as an example to study and analyze DEX design and offer a new solution. 

1.1 Automatic Market Makers (AMM) 
In addition to the matching model order book, trading with a market maker is a popular form of DEX on 

the Ethereum blockchain today. 

An example of a centralized market making model is Tokenlon, where specific market makers carry out 

transactions on-chain to fill orders from traders. The benefit of this model is that it is easy to get an 



equilibrium price1 from centralized exchanges, and trades can still be executed on-chain without using an 

extra trusted third party. This model has many drawbacks, including reliance on the capital of the specific 

market makers, low transparency, and reliance on centralized servers. This model looks more like an OTC 

using a smart contract to settle a trade than a DEX.  

In order to compensate for this, DEX's today have opted for an AMM model that allows anyone to be 

the market maker, and it generates the price on chain based on a formula. It is always on, fair, transparent, 

and anonymous. The most popular DEX using the AMM model is Uniswap. Uniswap derives price pairs 

based on a constant formula x*y=k. It has around 200 million USD worth of trading volume per day, but 

most of that has been made up of low liquidity asset pairs. These facts show us that despite being very 

easy to use, they have failed to capture the mainstream market of crypto traders.  

In addition, other platforms such as Balancer also use the AMM mechanism, and they allow anyone to 

build a combined asset pool that is not bound to one trading pair. It is an improvement to Uniswap but does 

not solve the liquidity issues plaguing all DEX's today.  

There are also other DEX's like Bancor that use a different pricing formula, but it is also based on partial 

equilibrium, which cannot reflect the real equilibrium price. They also have similar shortcomings with 

liquidity and pricing so we will not expand further on this.  

1.2 AMM problems 
The main problems with AMM's are not their automatic market making or asset pooling but instead the 

following: 

1. Formula based partial equilibrium pricing causes asset pool losses: Uniswap's pricing is based on

a constant formula that is indifferent to the outside market. It means that if a large fluctuation

happens on the outside, prices on Uniswap will not be able to adjust dynamically and will instead

be moved by arbitrageurs who know something that Uniswap does not. If Uniswap is used for

trading of highly liquid asset pairs, market makers need to charge higher fees to account for the

risk of outside price fluctuations. [1] [2]

2. Poor risk management: on Uniswap, there is no way to quantify risks that traders and market

makers undertake accurately. Market makers are only compensated by a fixed trading fee, which

may not be able to cover risks or may conversely cause traders to pay an unfair trading fee.

Arbitrageurs move the price back to general equilibrium at the expense of market makers and

traders. [1] [2] [3]

3. Trading sizes are limited by Partial Price Impact2: trades on Uniswap are subject to unfavorable

Partial Price Impact depending on the liquidity of the pool. This problem is severe in highly illiquid

pairs as a 1% change in the asset pool size caused by trade will result in a 1% Partial Price Impact

in the price for the trader. Larger liquidity pools reduce Partial Price Impact but also result in less

profit for market makers who have to share the profits with other market makers in the pool. [1] [2]

1 The equilibrium price is the market price where the quantity of goods supplied is equal to the quantity of 

goods demanded. 
2 Partial Price Impact is the difference between the equilibrium price and the execution price of a trade, 

which is caused by the trading impact on partial equilibrium, not the general equilibrium. 



1.3 EPM (Equilibrium Pricing Model) and NEST oracle 
If an accurate source provides prices based on general equilibrium instead of a fixed algorithm and 

partial equilibrium, it is easy for market makers to control their risks and effectively hedge against market 

forces while also providing a fair price for traders. This is the idea behind the EPM DEX model. 

A DEX based on this model has several advantages: 

1. It can support highly liquid mainstream trading pairs, which represent 80% of the total trading

volume in exchanges today.

2. It eliminates Partial Price Impact because prices are based on general equilibrium and computable

risks rather than a fixed formula and Partial equilibrium pricing, where the execution prices are

heavily affected by trading sizes.

3. A single trade can use up the full liquidity of a pool, however, this can be an additional risk if the

trading sizes are too big as they themselves may impact the equilibrium price.

4. By using the NEST oracle, all risks in such a DEX can be calculated, so market makers and traders

can do accurate risk management to maximize their profit.

We expect that this model will become mainstream, and we have already seen projects like DODO and 

Bancor v2 start using the equilibrium price. 

Obtaining equilibrium prices will require a decentralized oracle because the discovery of equilibrium 

prices heavily relies on centralized trading systems. This is completely unsuitable for a DeFi product. At 

present, most oracles carry centralization risk, and even the famous Chainlink project cannot completely 

remove a central point of failure with its node model. This is because the collateral requirements to run an 

oracle node providing inputs on Chainlink are decoupled from the actual cost of being inaccurate, and the 

prices cannot be verified in a trustless manner.  

The only oracle on the market today that provides accurate and trustless pricing information is the NEST 

oracle [4] [5] . Its structure is entirely trustless, decentralized, and has no central point of failure. We believe 

that NEST is the only option for DEX's using the EPM model.  

1.4 Computability and Algorithm-based risk control 
As mentioned above, most of DeFi today does not have a comprehensive risk quantification and control. 

Projects like MakerDAO and Compound use price oracles but do not quantify the price deviation risk, 

volatility risks, and other risks, and therefore cannot do algorithm-based risk control. Similarly, recent EPM 

based DEX's like DODO and Bancor v2 use the same rough trading sizes based management model that 

Uniswap uses.  

Current DeFi models only remove counterparty risk; they do not have a way to quantify other risks 

through algorithms. This is mainly because of the oracle, as it is the key module to pass equilibrium prices 

to DeFi smart contracts. Equilibrium prices are the only states that cannot be generated solely on-chain. If 

we can quantify the risks of an oracle, we can do algorithm-based risk control to optimize DeFi. 

The NEST oracle gives us the ability to develop a new kind of DeFi model, based on the computability 

of the NEST-price3. We can quantify the risks of using the equilibrium price and design DeFi applications 

3 Prices from Nest Oracle 



accordingly. With such a model, we can create DeFi 2.0, a new service where the risks can be quantified 

and managed by accurate algorithms. We call DeFi 2.0 “CoFi” (Computable Finance). 

When risks can be calculated and priced based on an algorithm, we will have a financial system that is 

truly non-custodial and automated. We believe that CoFi is the way to push the financial industry into a new 

era.  

2 CoFiX: a computable DEX 
CoFiX is the first innovative product in the CoFi field, and it is a DEX based on the NEST oracle. CoFiX 

consists of an oracle module, a market-making module, and a trading module. The idea of CoFiX is this: 

market makers and traders get their prices from the NEST oracle and can price in their computable risks 

with each respective trade. It ensures that market makers are motivated to make the market, and the traders 

trade with minimal price spread and without Partial Price Impact. We call it CoFiX because all the above 

parameters are computable.  

Note: CoFiX only supports trading pairs that are included in the NEST oracle; if users want to trade a 

pair on CoFiX that is not included in the NEST oracle, they will need to add a new pair.  

2.1 NEST price performance and computability 
NEST is a decentralized price oracle based on financial arbitrage. Through Double Options, Price chains, 

and the beta coefficient, we can achieve the effective prices (almost equal to the current equilibrium prices) 

on-chain. The difference between the NEST-price and the real-time equilibrium price is within a computable 

and acceptable range [4] [5] .  

2.1.1 Basic parameters of the NEST price 
Parameters The meaning of the parameters 

P Prices from the NEST oracle corresponding to a block number; if the current block does 

not contain a price, it will revert to the price in the previous block. 

P0 The equilibrium prices 

g The deviation in prices, it is calculated with |P − P0|/P 

! On-chain volatility rate 

!0 Off-chain volatility rate 

T0 Verification time 

T Price delay, if an application needs to use the price in block N, but the latest price from 

NEST is in block N0. T=N-N0

q The probability of standard quotation being arbitraged. When the price deviation is large, 

the standard quotation will also be arbitraged. This probability describes one of the 

essential characteristics of the NEST oracle. 

According to NEST's research paper [5] , under normal circumstances, the theoretical deviation in prices 

from NEST oracle, g is about 0.3%. The actual data is very close to this, as it is currently at about 0.4%. 

See NEST's research paper [5] for more detail about how to quantify the two significant price risks of NEST: 

deviation and delay. 



2.1.2 Price compensation coefficient 
The risk of using a decentralized oracle like NEST is caused by the deviation and the delay (T). CoFiX 

needs to compensate for this risk when quoting prices from NEST to ensure that the market maker is 

sufficiently incentivized to continue making the market. 

 Compensation factor K [6] [7] is the coefficient related to the volatility rate δ and delay T. When a trader 

makes a transaction, he does not directly use price P but rather P' =P*(1+K) (or P' =P*(1-K)). Similarly, 

when a market maker enters and exits the market, they use the price variable P' instead of P. This price is 

known as the transaction price.  

2.2 Market Maker Mechanism 
The market maker is still using an AMM, but unlike Uniswap, they can inject any asset into the pool 

without it being a pair. It is here that we introduce the concept of the net worth of the asset pool, which is 

that the market maker treats the asset pool as a fund. Every time a market maker enters and exits the pool, 

the amount they receive will be calculated based on their share of the net worth of the fund. This is an 

essential improvement to Uniswap because CoFiX does not require bilateral asset pairs to form prices 

because of the NEST oracle.  

2.2.1 Asset pool and trading pairs 
Each trading pair corresponds to an asset pool where the main trading asset is ETH. That is each asset 

and ETH form one trading pair. As noted earlier, each pair needs to be supported by the NEST oracle. 

2.2.2 Market makers receive XToken to represent their stake in a pool 
If a market maker adds ETH or USDT to the ETH-USDT pool, the market maker will receive XToken 

that represents their stake in the pool (share of the fund). 

2.2.3 Market maker net worth calculation 
If a market maker adds ETH or USDT to the pool, the net worth of their stake will be adjusted every time 

a market maker enters or exits the pool [7] . The net worth calculation is priced in ETH based on price P'. 

2.2.4 Perfectly hedge the market making risk 
Market makers need to do hedging to lock down the profit from price spread. The amount to hedge can 

be easily calculated according to the market maker's stake in the pool.  

2.2.5 Other risks of market makers 
CoFiX quantifies and manages risks based on a set of fundamental finance principles, but there are still 

additional potential risks if market makers improperly manage their assets. These potential risks are as 

follows:  

1. Since the coefficient K is designed based on statistical analysis, if the exchange pair is not

frequently traded, the market maker may be at risk of loss. Besides, if the market maker only

provides liquidity for a short period, they may be at risk of loss. These losses are probabilistic.



2. If the market maker does not hedge on other exchanges, they may bear price risks of an asset

changing in price.

3. The volatility rate is estimated based on historical data that may deviate from the actual volatility.

4. If an asset has inferior liquidity, it could trigger Circuit breakers. This may affect the profitability of

market makers.

2.3 Trader mechanism 
Traders complete transactions on CoFiX at prices acceptable to them. According to the analysis above, 

the deviation between the trading price P' and the equilibrium price P is minimal, and there is no Partial 

Price Impact caused by trading volume. These are benefits unique to CoFiX. 

2.3.1 Transaction mechanism 
With ETH-USDT as an example, as long as there are assets in the pool, the trader can enter the market 

according to the transaction price P' based on the NEST oracle. This process is KYC free, and the trader 

does not need to worry about Partial Price Impact, exchange security, or trading with prices different from 

the equilibrium price. For each trade, the NEST oracle must be compensated for providing quotes, but this 

process is as simple as paying for gas. 

A trade is settled with the latest price in the block of the transaction, not the price when they submit a 

transaction. There may be a time delay for their transaction to be included in a block, so certain protections 

should be set up for traders based on time delay or price differences.  

2.3.2 Circuit breakers 
According to the CoFiX trading compensation algorithm [6] , if volatility rate rises to an extreme level or 

the NEST system is attacked, CoFiX needs to activate an emergency procedure to protect both the trader 

and market maker. The system should be able to trigger Circuit breakers when the following conditions are 

met: 

1. The K0 value exceeds a range, e.g., K0>5%

2. The volatility rate ! rises to a limit, e.g., σ>0.1% per second

3. Delay T exceeds a range, e.g., T>900s

2.3.3 Transaction risk 
Traders have risks outside the model, such as transaction delays from low gas prices, which can cause 

differences between the expected price and actual settlement price[7] . This is an inherent risk of all AMM 

trading mechanisms.  

2.4 Equilibrium Price Impact cost 
When the size of the CoFiX asset pool is large enough, it will be difficult for a transaction to reach the 

upper limit of the asset pool's liquidity; however, a single large transaction could affect the market maker's 

hedging cost, as such a transaction may have a significant impact on the equilibrium price. 

For example, trading 1 million ETH in a CoFiX pool without the price changing would result in a loss for 

market makers hedging on the exchange as this trade would change the equilibrium price of ETH.  



Such large transactions will pay a premium, known as the impact cost C, to cover the risk. The impact 

cost is calculated by the price difference coefficient K1 =K+C, causing the price in the system to change to 

P' =P*(1+K1). Trading Compensation of CoFiX [6] and CoFiX Product Documentation [7] explains in more 

detail the Equilibrium Price Impact cost.  

3 System advantages and outlook 
CoFiX can be said to be the first DEX to achieve a comprehensive solution that is not only decentralized 

but also accounts for risks to traders and market makers.  

With quantifiable risk optimization for all parties involved, CoFiX is vastly superior to the DEX's on the 

market today. We believe that these characteristics make CoFiX suitable for mainstream users and 

mainstream crypto assets that represent more than 80% of the total crypto trading volume. With this in mind, 

it is easy to see how the trading volume on CoFiX will be 10x that of traditional DEX's.  
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ABSTRACT

We estimate the di↵erence between the trading price and a source price by which liquidity

providers of CoFiX can hedge their risk. The compensation rate is determined by the upper

bound of the di↵erence.
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1. Transaction Fee and Price Inaccuracy

While the reference price is the decentralized price generated from the Oracle, we are inter-

ested in controlling the maximal loss of liquidity providers, for the purpose of designing a

reliable decentralized trading system.

Let Pt be the decentralized price (e↵ective price generated by the Oracle), St be the price

outside of the blockchain (i.e. the price from an exchange), P̃t be the reference price for a

trade occurred in the blockchain. All are at time t.

Let P̂t be the execute price adopted by the trading system. It is linked to P̃t by the

relation: if one sells the asset

P̂t = P̃t(1�K)

if one buys the asset

P̂t = P̃t(1 +K).

That is, the liquidity providers require an extra percentage charge KP̃t for a transaction in

the trading system. The amount is proportional to the reference price and is used to cover

the potential loss due to the di↵erence between the reference price and the outside price. We

identify two major sources that contribute to the di↵erence: delay of the blockchain system

and inaccuracy of the Oracle prices.

There are many reasons1 that make referred price P̃t (the true price generated by the

Oracle) is a delayed version of optimal input price Pt (the theoretical price generated by the

Oracle mechanism). Let T be the delay of time. The two prices are connected by

P̃t = Pt�T .

Assuming that the normalized price Pt/Pt�T follows a Gaussian distribution

1
The major reasons include malicious attacks to the Oracle, large price changes, transaction

blocked/delayed in the blockchain system.

1



N(0,
p
T ), we can find that

|Pt � Pt�T | < Pt�T b

for a positive constant b, with probability ↵ := �( b
�
p
T
)� �( �b

�
p
T
), where �(·) is the CDF of

standard normal random variable.

On the other hand, the Oracle system generates Pt di↵erent from St, with a boundary

|Pt � St| < Sta,

where a = a(�2) is the di↵erence of Oracle price Pt and St. (This quantity equals 2V + ✏ as

described in a separate paper of the NEST system.)

So the di↵erence between the referred price and the outside price is

|P̃t � St| = |Pt�T � St|  |Pt�T � Pt|+ |Pt � St| = Pt�T b+ Sta = P̃tb+ Sta

It follows that (1� a > 0)
1 + b

1� a
>

St

P̃t

>
1� b

1 + a
.

Thus,

|P̃t � St| < P̃t(b+
1 + b

1� a
a). (1)

The trading system ensures liquidity providers that with probability ↵, their loss from

trading on inaccuracy prices is covered if the extra charge (transaction fee) rate K satisfies

KP̃t � |P̃t � St|.
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It is su�cient that we select K such that

K � 1

P̃t

P̃t(b+
1 + b

1� a
a) =

a+ b

1� a
. (2)

We summarize the above analysis into a proposition as follows.

PROPOSITION 1. If the trading transaction fee rate K satisfies (2), then the liquidity

providers in the trading system will not lose with a probability ↵ = �( b
�
p
T
)� �( �b

�
p
T
).

For a given set of (�2, T,↵), we can find b, a and then select a value of K satisfying (2).

The figure (1) depicts the quantitative relations ofK and �2, T , where a linear approximation

plane is given for e�cient usage in smart contracts, ↵ = 0.95.

We illustrate the result by several numerical examples.

µ = 0, � = 0.0002, T = 3600 (one hour), a = 0.005, we will find the di↵erence is less

than 1.5% with probability 99%. In other words, the parameters k in the formula should be

1.5%. for this case.

The inequality (1) also provide an upper bound of loss encountered by liquidity providers.

Let b0 = b(↵), which is a positive solution to ↵ = �( b(↵)

�
p
T
) � �(�b(↵)

�
p
T
) for a given ↵. Let

Z ⇠ normal(0, �
p
T ) and

Pt � Pt�T = Pt�TZ.

Then the expected loss (relative to the trading price P̃t) is (conditional on the region |Z| > b0)

E[Lt/P̃t||Z| > b0] = E[
a+ |Z|
1� a

1{|Z|>b0}] =
a

1� a
(1� ↵) +

1

1� a
E[|Z|1{|Z|>b0}]. (3)

The unconditional expected loss in percentage of the refereed price is

E[Lt/P̃t] = E[
a+ |Z|
1� a

] =
a

1� a
+

1

1� a
E[|Z|] = a

1� a
+

1

1� a

�
p
T
p
2p

⇡
. (4)

This expected loss can be used to determine K as well. The result is summarized as the

3



following proposition.

PROPOSITION 2. The expected loss of liquidity providers relative to reference price P̃t

is bounded by

K0 =
a

1� a
+

1

1� a

�
p
2Tp
⇡

, (5)

where a is the upper bound of the di↵erence between the Oracle price and the price in an

exchange.

The related numerical result is shown in Figure 2.

If we use the upper bound directly as the rate K to adjust buy or sell prices, the liquidity

providers may be over-compensated, because extra skills/e↵orts are required for the traders

to make the liquidity providers lose in most of time. To balance the interests of traders and

liquidity providers, we let

K = � ·K0 (6)

in practice, where � 2 (0, 1] represents the percentage of the expected loss compensated to

the liquidity providers. For a choice of � < 1, we suppose that liquidity providers and the

traders shall share the risk of price inaccuracy. Considering traders have to pay transaction

cost of the blockchain, it may be fair that liquidity providers bear part of the cost through

this channel of �.

In practice, value of K can not be updated for each trade due to gas expense. It is

necessary to updateK’s value periodically. Denote value ofK byK(a, T ), which is calculated

from a and T by (5) and (6). Then the value of K after t seconds from the last update is

adjusted as K 0 = K(a, T + t). This adjustment assumes that no e↵ective NEST price is

available in the current block.
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1.1 Geometric Brownian Motion

In this subsection we consider an alternative assumption that the price sequence Pt follows

a geometric Brownian motion. Precisely, we assume that

dlog(Pt) = �dBt.

It follows that

Pt = Pt�T e
�ZT ,

where ZT ⇠ normal(0,
p
T ). By similar steps as above, the expected loss under the assump-

tion of geometric Brownian motion is

E[L/Pt�T ] = E[
a+ |e�Z � 1|

1� a
]

The numerical test shows that the di↵erence of expected losses under the two assumptions

is as small as 0.0006. Not significant. Actually, for small � the Taylor expansion explains

the result.

1.2 Conventional Computation Methods

It will be convenient for DApps if the NEST also provide volatility in addition to price.

Considering expense of calculation in blockchain, we adopt the exponentially weighted mov-

ing average model to calculate volatility per block in a timely manner. In addition, we

assume a geometric Brownian motion for the asset price, or equivalently assume a Brownian

motion model for the log-return of the asset price. Denote

ut =
Pt

Pt�1
� 1.
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Let

�2
t = ��2

t�1 + (1� �)u2
t�1, t = 2, 3...

where � 2 (0, 1) and �2
1 can be calculated by a usual method, or just let it be u2

1 (after some

time, the result will be fine).

The weight � causes a term ut�m declined at a speed of �m. Therefore, more recent

returns (ut�k) impact the volatility (�t) greater.

For the application in the NEST, we have to consider the block gap between two successive

e↵ective prices. Let nt be the number of blocks between the block with price Pt and that with

price Pt�1 and let timespan denote the average time (in seconds) between two successive

blocks.

Then the formula is adjusted as follows.

�2
t = ��2

t�1 + (1� �)
u2
t�1

nt�1 · timespan
, t = 2, 3... (7)

with the start point �1 =
u2
1

n1·timespan . The weight � can be set as 0.95.2

In addition, we also provide a linear approximation formula for economically calculating

the NEST price deviation as follows.

a(�) = �0.0014687 + 19.8898⇥ � + gascost/10. (8)

where “gascost=gas price ⇥ gas consumed per transaction” is set to be 0.03 currently. It

may be updated according to a real situation.

As a summary, the conventional way to compute K0 is: compute � by (7), compute a by

(8), then compute K0 by (5).

2
With this weight, the latest 50 (25) e↵ective prices take more than 90% (70%) weights of the total. The

same idea can be applied to construct an exponentially weighted moving average (EWMA) of the asset price.

That is, P̄t = �P̄t�1 +(1��)Pt, with P̄1 = P1, t = 2, 3, ... By a set of data, the probability of a price greater

than the EWMA more than 2.5% is only 0.19%. Therefore, an extra constraint |Pt/P̄t�1 � 1| < 2.5%
may be imposed in the system to avoid extraordinary prices from the NEST oracle.
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Furthermore, an even more cost-saving approach is to consider the average of K0 over all

pairs of (T, �). That is, calculate

K̄0 = E[K0(T, �)],

where the expectation is with respect to the joint distribution of random (vector) variable

(T, �).

We estimate the expectation based on a data set spanning from July 13,2020- Sep 13,2020

and find that K̄0 ⇡ 0.005.

Adjusting the execution price by K̄0, the price deviation average with respect to ran-

domness (risk) from asset price Pt, delay time T , and volatility �, the liquidity providers are

supposed to be compensated fully over a relative long time period.

2. The Risk of Impact Cost

An important issue is impact cost, that is usually referred to the extra cost due to significant

price change when a large volume of assets are traded. For the trading system referring

Oracle prices, it is unwise to fix a trading price for a relative large volume trade. This

actually introduces a new risk to liquidity providers, we refer it as the risk of impact cost.

To handle this issue, we have to carefully study an order-book of an o↵-chain centralized

exchange where liquidity providers hedge the risk from the decentralized trading system.

The idea is to adjust trading prices according to trading volume. The mathematical relation

between the price and volume shall be derived from the order book. By this design, the

liquidity providers can hedge the impact cost risk e↵ectively.

Through initial analysis of a set of order book, the impact of trading on price (impact

cost) is depicted by Figure 3. It indicates that the impact is not significant, below 0.3% for

trading volume less than 1000 units of ETH. The data is from huobi.com.
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3. The Delay Risk to Traders

A trading order may be delayed due to blockchain’s performance. One trader places an order

when seeing a specific reference price, his order most likely will be delayed for several blocks

(up to 50!) until it is packaged in a new block. At the moment, the order is executed by

the reference price at that moment (P̃t in the preceding analysis). Suppose the

delay time is ⌫ whose value is relevant with the situation of the blockchain system. The risk

encountered by the trader is controlled by a normalized random variable as follows.

P̃t/P̃t�⌧ � 1 = Z ⇠ normal(0, �
p
⌫)

So the trader may buy/sell at a higher price than what he sees with probability 50%

(half-to-half, that is fair). The price is higher than 1% is with probability

Pr(Z > 0.01) = Pr(Z0 >
0.01

�
p
⌫
),

where Z0 ⇠ normal(0, 1). For � = 0.0005, ⌫ = 60(seconds), the probability is only 0.5%. If

we change 1% to 0.5%, the probability increases to 9.8%. That matters! Thus, we suggest

to show a reminder about this delay risk to traders.

For market markers, this delay is not a risk because they hedge at the execute price (the

reference price), not the price that the trader sees.
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Figure 1. This figure depicts price inaccuracy when using the e↵ective price as a reference
for a trade. The gray flat plane is a linear approximation to the surface.
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How Accurate the NEST Price Is

ABSTRACT

This short article develops a model to estimate the di↵erence between the NEST price

and a source price, e.g. price from an exchange. Under plausible assumptions, we show that

the di↵erence can be as small as 0.003 when volatility is small. It can even be lower if the

transaction cost in the blockchain gets lower.

Appendix 2:  



1. Model Setup

A price-provider is an individual who inputs a price into the NEST system and waits

for a certain number of blocks passing to be verified by other individuals. The operation is

equivalent to write an American type call and put option that anyone else can exercise it by

using the input price as the exercise price. Thus, the price-provider shall minimize the value

of this option by carefully choosing an input price. Precisely, the price-provider’s objective

problem is

P ⇤ = argmin
P

⇣
max

⌧
EQ[e�r⌧ |S⌧ � P |]

⌘
, (1)

where�⌧ ��5��JT�a�stopping�t ime�and�5��JT�a�fixed�t ime�horizon1�, �P�i s�the�i nput�price�decided�by�

the� price-provider.� In� other� words,� the� price-provider� has� to� minimize� the� value� of� one

American�type�option�by�choosing�an�appropriate�exercise�price�P�.�Here�asset�price�St,�t���0

shall�be�referred�to�the�price� in�an�exchange�at�time�t.�Thus,�the�market� is�complete�and�we

price� the� derivative� in� a� risk-neutral� framework� by� taking� the� expectation� under� the� risk-

neutral�probability�Q.

Denote�the�solution�to�the�above�problem�by�P�⇤�=�P�(S0;��),�where��� is�the�volatility�of�

the�source�price�sequence�St.� Noting�that�the�price-provider� inputs�a�price�optimally�based

on�all�of�his� information� from�a�centralized�market�and/or� from�the�decentralized�world.

1.1� Arbitrageur

The�price-provider�writes�an�American�option�when�he� inputs�a�price�K.� It� seems� that

anybody�can�exercise�the�option�without�any�cost.�However,�the�NEST�requires�that�the�one

(arbitrageur)�who�exercises�the�derivative�must�input�another�price�and�lock�in�as�much�as��

times�the�original�asset�requirement.� In�other�words,�to�exercise�one�option,�the�arbitrageur
1For� the�NEST� system,� the� time� horizon� BDtually� is� random� because� the� time� interval� between� two�

successive�Ethereum�blocks� is.� The� framework� in�this�note�can�be�extended�to�study�this�case.
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has to write � units of the same type of American options, where � > 1 is a specific multiplier.

One arbitrageur who wishes to make profit from the derivative can construct (sell) a

portfolio in the outside market that replicates the derivative. Then the arbitrageur can

make a risk-free profit the same as the value of the derivative. However, there is risk that the

arbitrageur can not obtain the opportunity to exercise the derivative because it is competitive

to take the arbitrage. Therefore, instead of making the risk-free profit, a realistic strategy

is to make a quick profit in the sense of statistic arbitrage as follows.

The arbitrageur does nothing but waits until the di↵erence between the outside asset

price and the input price P is su�ciently large. Then he exercises the option and buys or

sells in the exchange simultaneously to make money without any risk. Such an opportunity

may not be available for all time, but in long time there are many chances. So statistically

the arbitrageur can make money.

We calculate the following objective function for the arbitrageur:

max
⌧

E[(|S⌧���P�| ���a)1|S⌧��P�|>A,⌧<5�
(2)

where A represents all costs of the transaction, including Ethereum transaction fee and the

value of the derivative multiplied by �. The stopping time ⌧ in the above indicates that

the arbitrageur will wait for the best time to take the arbitrage. However, considering the

competitive environment, most likely, the profit is taken when the first time a target is

reached. So the objective function turns to be

E[(|S⌘���K|���A)1⌘5��] , (3)

where�⌘�=� inf{t� :� |St���P�|���A�>�✏}�and� ✏� is� the�minimum� target�profit�of� the�arbitrageur.

Along�with�the�arbitrage-taking�method�(3),�the�corresponding� loss�(or�the�cost�of� inputing

a�price)�of�the�price-provider� is

E(|S⌘���P�| 1⌘T��) .
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The price-provider shall minimize the cost by choosing an appropriate K. That is, the

objective function of the price-provider is

min
P

E[|S⌘���P�| 1⌘5���

In fact, we should price it in a risk-neutral sense:

V ⇤(0) = min
P

EQ[e�r⌘|S⌘���P�| 1⌘T��] ,

where r is the risk-free interest rate. It yields that the price-provider can construct a portfolio

in the outside market to hedge this derivative, so that his loss is a deterministic value same

as V ⇤.

2. A Solution of the Model

Given the design of the NEST, we let

A = �V ⇤(⌘),

where V ⇤(⌘) denotes value of the same derivative at time ⌘. We let ✏ be the transaction fee

in the blockchain (the gas fee).

Aware of the way the option is exercised, the price-provider actually considers the objec-

tive problem as follows.

V ⇤(0) = min
P

EQ[e�r⌘|S⌘���P�| 1⌘T��] �=�min
P

EQ[e�r⌘(A�+�✏)1⌘T��] �=�min
P

EQ[e�r⌘(�V�⇤(⌘)�+�✏)1⌘T�].

(4)
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We assume that the asset price follows a Brownian motion with drift:

St = S0 + µt+ �Zt,

where Zt is a standard Brownian motion. Then V ⇤(·) is identical at any time. The recursive

formula (4) is simplified (for a stationary solution under constant state variables µ and �)

V ⇤ = min
P

EQ[e�r⌘1⌘T��] (�V�⇤�+�✏). (5)

Exploiting the density function of ⌘, the first hitting time of Brownian motion, we can

evaluate the expecation in (5) and solve for V ⇤ and P ⇤ numerically.

Set µ = r = 0, ✏ = 0.003 (the gas fee of one transaction in the Ethereum/10ETH),

S0 = 1, we obtain the following results.

For � = 0.0001, 0.001, 0.003 per second:

� = 1.5: V ⇤ = 0.0030, 0.0104, 0.0327; probability of arbitrage: 0.0726, 0.3353, 0.3765

� = 2: V ⇤ = 0.0003, 0.0092, 0.0291; probability of arbitrage= 0.0792, 0.4301, 0.4755,

� = 3: V ⇤ = 0.0002, 0.0074, 0.0233; probability of arbitrage= 0.0894, 0.6064, 0.6696,

where�t�he�probability�of�arbitrage�i�s�defined�by�EQ[1⌘T�].�For�all�of�t�hese�cases,�t�he�optimal�

input-price�P�⇤�=�S0�=�1.� Since�St� is�assumed�to�be�a�Brownian�motion�without�a�drift,�this�

answer� is�obvious.

The�sensitivity�analysis�regarding�verification�during�t ime�T��, �probability�of�arbitrage,��,�

volatility���are�shown� in�Figure�1�and�2.

2.1� Di↵erence�between�NEST�Price�and�Price�of�Exchange

By� the� preceding� analysis,� the� di↵erence� between� the�NEST� price� and� the� price� from�

an� exchange� is� bounded� by� a� :=� �V�⇤�+�✏.� Figure� 3� indicates� the� upper� bound� can� be� as�

small�as�0.003.�The�upper�bound�can�be�decreased� if�the�transaction�(arbitrage)�cost� in�the�

blockchain�becomes�small.�Alternatively,�We�may�increase�the�asset�requirement�of�inputing
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a price to decrease the relative weight of ✏. For example, if we increase the asset requirement

to 50 ETHs, the di↵erence bound turns to be 0.002 only.
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Figure 1. This figure depicts e↵ects of volatility � on cost of price-inputing and probability
of arbitrage.
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Figure 2. This figure depicts the e↵ect of � on cost of price-inputing and probability of
arbitrage.
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Figure 3. This figure shows the upper bound of di↵erence between the NEST price and
the price of an exchange at the same time.
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