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Abstract

“Humility is the solid foundation of all virtues”

Confucius

Blockchain is a flourishing technology that is in a constant state of
change. Nexus is pioneering a new approach to Blockchain technology
that solves the biggest challenges faced by the industry, viz. scalability,
ease of integration, and intuitive user experience. Beginning with the
Tritium update, we are creating an innovative software stack contain-
ing multiple layers of abstraction that will streamline business integra-
tion into the Nexus framework, form the foundation of a cryptographic
identity system, and make smart contracts easily accessible through a
feature-rich API set. Each API call will be developed through a stan-
dardization process, with input from businesses, industry leaders and
developers, focused on providing a well-designed interface and seamless
business integration.
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nexus: a connection or series of
connections linking two or more
things.

Oxford English Dictionary

1 Introduction

The proposed architecture within this paper combines together a unique
set of technologies to increase the processing capabilities of nodes in a dis-
tributed system. By creating a clear distinction between each of these func-
tional components, each layer can be developed and improved independent
of one another, processing can be shared across multiple layers, and the in-
tegration challenges can be minimized for anyone who chooses to build on
this system.

2 Software Stack

Following a year of market research, the Nexus software stack follows the
principles of modular design, making it uniquely powerful for a range of new
use cases. This software stack consists of seven layers, which can be seen
below:
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The first layer is considered the Network layer and contains the first six
layers of the OSI Reference Model Network Stack. This is followed by the
Ledger layer (3DC) that holds the different data structures representing the
distributed database. The third layer is the Register layer that allows an
application to record its state, transfer write permissions to another user,
or read the data from a register that acts as a global network-wide address.
The Operation layer is the fourth layer and provides processing capabilities
for the Register and Ledger layers. The standard operation codes and se-
ries of codes that act as methods for the object registers will be defined by
consensus at annual conferences, ensuring a consistent connection between
development and users. The API layer is the fifth layer of the software stack
and will contain a standard set of API calls that executes a series of oper-
ations, automating a group of actions that returns the desired result. The
Logical and Interface layers, being the sixth and seventh layers, are the ap-
plication and user space where most developers and users will interact. The
intuitive design of these layers as distinct functions will provide a premium
experience to developers building applications on the Nexus framework.

3 Network

The Internet is built in layers of
software called the “OSI Refer-
ence Model Network Stack” [1].
This stack is responsible for all
transmission of data from Layer
1 via a physical link to Layer 7,
the application space. To lay
the foundation for viable scal-
ing solutions, certain aspects of
the original Blockchain protocol
need to be revisited. Any scaling solution needs to consider how the network
propagates messages and which layer it can simplify down to.
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3.1 Unicast Flood Networks

Peer-to-Peer (P2P) networks such
as Blockchain require that every
message be relayed via unicast [2],
giving rise to the term “flood net-
work”. For a message to propagate
across the network, all nodes on the
network must first process it and
then relay it to their peers. P2P
networks gain their robust nature

through a large number of active nodes, creating more redundancy in the
system. This redundancy comes at the expense of increased message prop-
agation time and increased “complexity” of the routing algorithm, which
grows as per O(n2) [4]. This is termed “exponential time” and is a highly
undesirable complexity for any algorithm other than cryptographic, because
as more nodes join the system, they draw exponentially more resources from
it. Thus, cryptocurrency networks must balance the number of nodes re-
quired to provide a high degree of redundancy and robustness against the
exponential cost of message complexity.

3.2 Multicast Locking Groups

Due to the limitations inher-
ent in the basic operation of
P2P flood networks, it be-
comes increasingly clear why
distributed ledgers have dif-
ficulty scaling. Scalability is
not always determined by the
actual size of the ledger, or a
state required to be held by
all nodes, but also on how the messages route through the network. Tritium
provides an optimized, efficient routing system called “Multicast Locking
Groups” and is the first step towards Level 1 locking in a multidimensional
chaining structure. As seen in the diagram above [3], IP multicast handles
the packet replication on the Network layer rather than the Application
layer, which significantly speeds up propagation time. The secondary ben-
efit to running IP multicast in locking groups is that they begin to form
parallelism on the Network layer, meaning that messages are broadcast to
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relevant nodes whilst preserving global consensus layers. The final benefit is
that multicast locking groups can have access control to the groups, which
would mean that nodes authorized to broadcast or verify from each of these
groups could be easily validated on the ledger.

3.3 Network Topology

As seen in the diagram above [6], a distributed topology is an ideal network
configuration of great resilience, and while most cryptocurrency networks
are assumed to be distributed, consensus mechanisms of other protocols can
become decentralized by degrading into several pieces. This is due to certain
limitations of devices that use “Network Address Translation” (NAT), which
allows devices within a Local Area Network (LAN) to share the same public
IP address and route packets to their corresponding device based on port
number. When nodes are behind a NAT, there can be difficulties getting
an opening in the NAT for a node to accept incoming connections. This
creates a bottleneck, collapsing a distributed network into a decentralized
one. To solve this, the Locator/ID Separation Protocol (LISP) is included
to support an open and secure overlay where Nexus nodes have their own
Network layer identity, which maintains a distributed topology regardless of
connection method or location.
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4 Ledger

The Ledger layer of the distributed database system is the structure in which
transactional data is organized. Powered by the Lower Level Library, which
contains security, database, and protocol messaging services, this layer is
the foundation for other applications to be built upon it. Improvements to
the current Blockchain-based ledger are outlined in the following sections.

4.1 Signature Chains

Tritium introduces a new system called “Signature Chains” that is designed
to increase the security and flexibility of private keys, provide replay pro-
tection for account-based transactions, and prevent dust spam attacks. Sig-
nature chains provide username and password functionality which is further
protected using a PIN code, removing the need for a wallet.dat file to access
your private keys. This functionality forms the basis for a digital identity
system linking every event tied to the signature chain. The illustration below
shows the scheme in more detail.
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4.2 Evolving Signature Scheme

Signature chains are a quantum-resistant evolving signature scheme devel-
oped specifically for Blockchain applications. Like the Winternitz signature
scheme, it uses a one-time signature (OTS) that signs one message per key.
The key update algorithm is automatically called after signing a transac-
tion, as a key update is required after every signature. The key update al-
gorithm takes a secret input provided by the user, a pseudo-random string,
and a nONCE then hashes these inputs multiple times using Skein-Keccak
(SK) to form the basis for a private/public key pair based on the Brain-
pool Standard [7]. The public key is then hashed using SK-256 to create a
32-byte NextHash that is then published with the transaction data. This
NextHash will be in the form of:

Nh = Hash256(Hash512(Hash1024(Pub0, Pub1, ...))) (1)

By obscuring keys and sensitive data through hash functions, and by updat-
ing the key after every transaction, this signature scheme reduces the win-
dow of vulnerability to the period between making a transaction and that
transaction being included in the ledger. Addresses are no longer tied to the
public key of an account and can be reused indefinitely while maintaining
maximum security, whereas conventional designs that rely on multiple-use
signature schemes become less secure with each use. The signature scheme
outlined above is extremely compact, and it can be adapted to use almost
any hash function or asymmetric cryptography.

4.3 Financial Contracts

Tritium transactions will no longer contain the UTXO sets as used by Bitcoin
and most cryptocurrencies. Instead, Tritium uses accounts tied as financial
contracts to a user’s signature chain, which substantially reduces the disk
and memory footprint of running a node. A minimum PoW will be required
as a cost when creating an initial account. Using a signature chain as a
decoupled structure from the account prevents the re-use of a key and easily
detects conflicting transactions. This also prevents dust spam attacks and
allows transaction fees to be removed.

4.4 Identity

Through its qualities of immutability and transparency, a distributed ledger
can be considered a trusted platform. Consensus on a series of events or
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information, i.e. transactions, is publicly verified alongside the attached sig-
nature chain, thus it can be referenced to determine whether a certain event
has happened or piece of data is accurate. This forms the basis for an iden-
tity system built on the core layers of the technology. By linking accounts to
their data and enabling them to verify events on the ledger, users can own
their own identity. Through signature chains, users can access their account
on any device through secret information known only to themselves. This
sets the stage for more advanced identity markers, as signature chains can
be configured to use biometric data such as fingerprints or retinal scans.
Identity is also established at the OSI Network layer through LISP endpoint
identifiers (EID). LISP EIDs are used to give each signature chain a rout-
ing identity that maintains integrity across all layers and allows users to
make direct P2P connections through their “cryptographic identity”. Any
attempts to spoof an identity can be prevented as identities can be inde-
pendently verified on the OSI Network layer and the Ledger layer. Privacy
features can also be implemented by encrypting data packets with LISP on
the Network and Presentation layers of the OSI stack. This provides robust
checking and balancing on the Internet by properly linking cryptography
with network routes.

4.5 Reputation

The mechanism of “Trust” is an established mathematical equation based
upon the track record of an individual node. This mechanism functions
primarily to build a digital “reputation” centered around a series of events
that individual nodes have embarked upon, and it will create a reference
system for more reputable nodes so that node selection and bias can be more
accurate. Allowing nodes on the network to verify each other through their
reputation solves a large issue in most “Proof-of-Stake” (PoS) consensus
protocols. By coupling an economic incentive with greater trust, such as
higher returns on verification, there is a (non-trivial) cost incurred by loss
of reputation. The key to a good reputation system lies in the effort required
in gaining a reputation versus the comparative ease of losing that reputation.
An individual must spend their time and resources supporting the network to
build up their reputation in the system. If an individual were to oppose the
collective consensus and pretend certain events have happened, they could
have their trust reduced and the viability of their “witnessing” decreased.
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4.6 Relationships

The reputation system is an added layer of protection against attacks that
further improves the network’s “Byzantine Fault Tolerance” [5]. While the
reputation system can be considered as the public image of each node, the
relationship system determines how nodes engage with each other on an indi-
vidual basis. This begins a process of selection bias between nodes, strength-
ening connections with each other similar to how synapses strengthen in
response to activity. Under-performing or malicious connections may be
pruned and replaced by better, more reliable connections that strengthen
the resilience of the network. This adaptability allows the network to opti-
mize performance, and even measure its performance over time. Eventually,
nodes can form a private and unique perspective with each other and de-
termine “normal” node interactions such as communications, transactions,
and other behaviors. This allows nodes to calculate the validity of another
node’s “word” based on past events in their reputation, coupled with their
personal relationships with one another. If a node attempts to attack the
network, this can be measured against the established “normal” series of
events and distinguish the attacker. This lays the foundation of what can
be considered an immune system for the global network and consensus mech-
anism, whereby the network can identify an attack by the departure from
normal behavior and neutralize it before sustaining damage.

4.7 Twin Blocks

In most current Blockchain technologies, blocks are a single channel data
structure which other nodes build upon. In the case of two blocks being
discovered simultaneously, the block accepted by the majority of nodes and
built upon is considered as the valid block and is incorporated into the ledger.
The other block is abandoned and is known as an orphaned block. When
an orphaned block is discovered, the work that successfully produced that
block is wasted. The Tritium Protocol will include twin blocks to reduce the
possibility of an orphan happening and increase network capacity. If two
blocks of the same height are arranged in the chain of different channels, they
will both be accepted as valid if there are no locking conflicts, which is when
both blocks contain mutually opposing transactions such as an attempted
double spend. This begins a form of horizontal scaling as well as introducing
cross-channel accountability, where multiple block verification channels such
as Prime, Hash, or Holding can verify blocks produced by each other.
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5 Register

Determining ownership of data in most modern systems depends on third
parties in the form of a trusted authority. These systems are unable to
achieve global consensus or provide immutability and are therefore prone to
corruption, theft and other arbitrary weaknesses. Distributed ledgers solve
these problems and can be further improved through use of a data layer that
acts to provide an incontrovertible truth delegated by global consensus. Un-
derstanding this, the Nexus advanced contract engine will be register-based
and will act as a state recording machine. Registers are self-contained ob-
jects that hold data associated with the given signature chain that published
its most recent state. This can be more easily understood by the following
diagram:

In the diagram above, two transactions record new states through a WRITE
operation at register address 0x094ea32. The center transaction is perform-
ing a WRITE operation to address 0x91edd2a with the data from a READ
of the most recent state of 0x094ea32. Before recording a state, nodes will be
required to satisfy all validation scripts for register writes. The two READ
operations above are simple queries to recent states in the register’s address
and demonstrates different methods of interacting with the Register layer.
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5.1 State Register

A state register is a register where the ledger deposits raw bytes on a write
operation and returns raw bytes on a read operation. This gives developers
the flexibility to serialize data into their registers, updating the state on the
ledger while maintaining the interpretation of these byte sequences at the
Logical and Interface layers. This ability means higher levels of abstraction
of the ledger can be incorporated without putting unnecessary strain on the
processing nodes. An example of a raw state register could be reference
hashes of specific checkpoints in their private databases, to allow the easy
verification of data states within internal systems without compromising
privacy. This can be especially useful for systems that require confidentiality,
such as medical records or intellectual property. The Ledger layer will be
responsible for ensuring that operations are authorized through an access
control scheme and that the register is not placed into an invalid state, such
as attempting to write to a read-only register.

5.2 Object Registers

Object registers act as their own self-contained objects, similar to how a class
functions in object oriented programming. Object registers can be used for
many things including the standardization of specific class formats for meta-
data that can be modified by its methods, such as transferring the rights to
said meta-data. Object registers could also reference other object registers
as part of a template, enabling the chaining of these data types. Certain
limitations must be placed on the total number of operations and cycles
required for each method to ensure that Denial-of-Service (DoS) attacks
remain infeasible while providing a unique environment for developers to
integrate with distributed ledgers.

6 Operation

Operations are byte-level instructions that can be used to perform basic
tasks on registers. The operation codes will require a standardization pro-
cess and will be thoroughly tested before becoming deployable scripts for
the API layer. These instructions can optionally be compiled from domain
specific languages. These languages can become part of the standards pro-
cess for generating a series of operations that interact below the API layer
and perform tasks desired.

14



6.1 Codes

The following codes can be used to describe some basic functions of the
Operation layer:

1. READ

This operation code will be responsible for returning the contents of a
register address by submitting a query to the network that will return
that register’s most recent state.

2. WRITE

This operation code will be responsible for writing data to a regis-
ter address. Authors must have the correct authorizations, and the
register must not be read-only.

3. DEBIT

This operation will perform a basic subtraction from an available bal-
ance in an object register. This operation will function as a claim
ticket to deduct funds from an account when making a transaction,
and it will require its counterpart to add those funds to the destination
signature chain.

4. CREDIT

This operation will perform a basic addition to an available balance in
an object register. It will be the counterpart to the debit transaction
sequence and is required to fully move funds from one signature chain
to another by proving the series of events leading to the state balance
of the sending register.

5. TRANSFER

This operation will transfer the rights to a register of any type, moving
the assigned permissions from one signature chain to another. Data
can then be transferred between signature chains or simply show the
chain of custody of a specific piece of meta-data, such as a record of
ownership of a copyright.

6. AUTHORIZE

This operation will provide an authorization token to a user’s register
or signature chain, providing proof on the Logical layer that a given
public key is valid and authorized to access the services provided.
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7. GETHASH

This operation code will be responsible for hashing the data that is
submitted as a parameter to it. For example, this might return the
hash of data held at a register address, providing a checksum of the
most recent state of said register.

6.2 Sanitize Inputs

Object registers can contain methods such as assignment operators for spe-
cific data types, which is necessary for the Operation layer to perform the
role of sanitizing inputs. Sanitizing inputs is an important requirement for
registers that store specific meta-data formats, which requires each new ad-
dition to fit a standard template by the agreed upon process.

7 API

Contracts hold the key to the future of distributed systems, although current
implementations have issues with accuracy, performance, and ease-of-use.
These limitations make the implementation process needlessly complicated
and expensive, which raises the barriers to entry and leads inevitably to
obsolescence. Considering this, the advanced contract engine will be acces-
sible through an intuitive API set designed specifically for ease-of-use and
seamless integration with existing software. APIs will be accessible through
a JSON-REST interface that is globally accessible across the network. Var-
ious APIs will enable developers to push/pull data from the ledger, define
terms for new contracts, submit transactions, or define an instance contract
for tokenized data. Rather than using a specific Turing-complete language
for access, the front-end can be written in any language preferred by the
developer.

7.1 Gateways

Node API gateways will provide access to the API layers, with access guided
by the gateway’s EID. Any node can act as a gateway by advertising their
EID as an API gateway. An API gateway can require authorization by a
signature chain message signing key. Developers on the Logical layer can
implement calls through these gateways to interact with the lower levels of
the software stack.
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7.2 API Types

There are many different industries that will require industry-specific APIs,
including medical, copyright, finance, and identity. Each API will function
according to the standards set by the standardization process, executing
a series of operations through the Operation layer that will interact with
registers and validate states through the ledger.

7.3 Standards

The APIs, along with the processes on the Operational layer, will be de-
cided through a standards process at regular conferences. The model will
be similar to the Internet Engineering Task Force (IETF) standards such as
Request for Comments (RFC) and Internal Standard Organization (ISO),
and will allow businesses to help define new operational methods for object
registers, along with new API calls for industry-specific API sets. Consulta-
tion is considered necessary for the successful adoption of distributed ledger
technology, ensuring that development continues to meet user needs and
that the ledger can evolve to the exacting new standards.

8 Logical

The Logical layer is the core application space of the software stack. Ap-
plications built on the Nexus framework will use the API layer to interact
with the network, apply new states to registers, execute register operation
methods, or authorize to signature chains. Some examples Applications
can be found in the appendix.

8.1 State Recording

The Logical layer could, through its abstraction layer, use the ledger as a
state recording machine to record new states of its program. These would
be key checkpoints to the main system, using the immutable ledger as a
reference point for recent states in distributed applications. Arbitrary data
can be interpreted from the Logical layer by de-serializing any input data in
and out of a state register.

8.2 Data Chaining

Data chaining enables full control of one’s own data in a manner that others
can reference and utilize through the Logical layer. This allows the creation
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of various checks and balances, as verification of that data can be performed
by one’s peers. Signature chains are a core component of data chaining as
each chain is established with their own record of events according to what
they publish.

8.3 Authorization

Signature chains can form the basis for an access control scheme, by restrict-
ing or granting access to specific data such as contracts or multi-signature
accounts. In the API functions, standard authorization calls can be used to
publish an access list containing specified public keys that authorizes access
to data on a private network. This will also provide the Logical layer the
opportunity for encrypting data with this published and authorized public
key, and also be a record keeper of the signature chains that have requested
access to certain components of the Logical layer.

9 Interface

The Interface layer will improve the accessibility of the Ledger layer by
interacting through API calls and operation codes. Through two major
areas of focus viz. a decoupled daemon and modular design, interface design
becomes simpler yet more powerful . Developers can focus on providing an
intuitive and responsive UI instead of the intricacies of Blockchain design.

9.1 Decoupled Daemon

As currently implemented, the qt-wallet couples the graphical user interface
(GUI) with the actual daemon-level operations, which creates an unrespon-
sive, poor user experience. The Nexus user interface (UI) will be a stand-
alone application running independently of the daemon, which will run in
the background. This allows for seamless updates to the core software, and
automatic reloading and bootstrapping to occur in the background with
minimal user interruption.

9.2 Modular Design

Modular design is an important aspect of system architecture, providing a
more robust and stable software platform as modules run on individual pro-
cesses separate from the main application. Modules can then be developed
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to meet future needs or perform specific tasks and provides greater flexibil-
ity and extensibility. The user interface adopts this approach and grants
the end-user full control over their UI, allowing them to select and install
modules as needed. This allows developers to create an array of new use
cases limited only by imagination, creativity, and available technology. This
will engender the birth of a marketplace where developers can share and sell
custom modules built for the Nexus interface.

10 Security Considerations

This section delves deeper into the mathematical foundations underpinning
signature chains as a signature scheme. It explores the relative quantum re-
sistance for signature chains through the combination of Grover’s algorithm
and Shor’s algorithm. This section uses Big O notation [4] to depict the
number of iterations required to successfully attack a given encryption.

10.1 Attacking the NextHash in SigChains

As explained earlier in this document, we can determine how a NextHash
(Nh) is generated:

Nh = Hash256(Hash512(Hash1024(Pubn))) (2)

This can be reversed into the public key by Grover’s algorithm requiring:

= O(2128 + 2256 + 2512) (3)

Retrieving the private key from a reversed NextHash in a signature chain
would require an additional O(5123) iterations. Therefore, one would have
the very last private key in that signature chain with a total of:

= O(2128 + 2256 + 2512 + 5123) (4)

Access to this private key allows one to claim ownership of the signature
chain and the associated balance of NXS or data. The number of iterations
illustrated above is an astronomical number and is above the recommended
cryptographic standard for Top Secret [8]. This makes it suitable for the
emerging quantum age.
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10.2 Attacking vulnerable public keys

Another security consideration concerns the ability of quantum computers
to attack vulnerable public keys. Signature chains keep the active keys ob-
scured until a transaction is made and only the public key is ever published.
This protects active keys against Shor’s algorithm, but once the public key
is published then quantum computers with approximately 3500-qubits could
attack the public key over running time O(n3). If a quantum computer were
able to break an old public key and reveal the corresponding private key, it
would be in a position to attack the master base hashes. This is the process
of generating the MidHash:

= Hash512(Hash1024(SecretA) + Hash1024(SecretB)) (5)

To further increase entropy, each secret input is combined with a pseudo-
random string generated from the previous transaction. Thus, the creation
of a signature chain is the result of hashing data points known to the user
but unknown to the attacker.

= O(2256 + 2512 + 2512) (6)

This shows how the master secret phrases (SecretA and SecretB) can be
secured at above a 512-bit quantum standard.

10.3 Brute Forcing Weak Secret Seeds

Another attack that could be used is known as a dictionary attack, where a
key pair is generated by brute forcing inputs from a word list. The generated
public key would then be hashed and compared against the NextHash to
see if it unlocks a user’s signature chain. If someone were to use a weak
username, password, or PIN, the ability to attack it with dictionary attacks
would be greatly increased by the weakness of the password.

O(2
128·216

k ) (7)

In the figure above, variable k demonstrates the relationship between the
complexity of your password versus the complexity of the dictionary attack
with a SecretA minimum entropy of 128 bits, and a SecretB minimum
entropy of 16 bits. The larger the word list used by the attack, the greater
the chances of successfully brute-forcing the seed data that generates the
MidHash. The greater the entropy in SecretA and SecretB, the less chance
there is that an attacker will successfully find the MidHash.
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11 Conclusion

The Tritium Protocol as described in this document is the first of three
updates named Tritium, Amine and Obsidian (TAO). Inspired by the prin-
ciples of modular design, these updates represent a new stage of Blockchain
development that addresses the critical issues facing existing technology.
They bring remarkable improvements in efficiency, scalability, and security
through the intelligent use of the cryptography, architecture, and software
layers that power Nexus. The magnum opus of the Tritium upgrade is the
register-based smart contract engine. This engine provides the opportunity
to directly own, transfer, lease, or publish data that can be securely uti-
lized, distributed and/or monetized. It is the first step towards a practical
and efficient distributed system that can be tailored to various use cases.
Through an intuitive user interface and comprehensive API sets, Tritium
enables seamless integration with other applications. With the upcoming
release of key elements of Tritium, there is plenty to be excited about.
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A Appendix: More content for those inclined

If you seek more details about the Tritium protocol or content to reinforce
what has been written above, please continue reading.

The real danger is not that
computers will begin to think
like men, but that men will
begin to think like computers. -
Sydney Harris

B Update Phases

The fundamental Contract phases are outlined through the three stages of
the TAO framework. With each update, new components of the contracting
engine will be released. This reduces overall contract complexity by isolating
the simplest and most useful features, and allows businesses that are building
on the Nexus software stack to have input on the forward development
and outlines of the standards for each release. This is very important for
streamlining the integration between consumers, businesses, and networks,
as every component complements one another such that none can exist in
isolation.

C Applications

The following sections will outline some of the practical use cases in a post-
Tritium development environment. These use cases build upon different
aspects of the network ledger such as reputation, contracts, and register
states.

C.1 Receive Accounts

The incorporation of advanced contracts into the software stack allows the
generation of receive accounts with built-in smart financial instruments, such
as stipulations on funds received and their appropriation. Such instruments
could prevent a holder from receiving funds deposited into their account
from an unapproved source or origin, require a receive signature from the
receive account i.e. a receipt, or prevent funds from being sent to an invalid
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address. Extrapolating further, smart financial instruments such as receive
signatures can be expanded into a form of multi-signature contracts, where
senders of funds into the receive address would be required to sign together
for the movement of any of the funds. In the case of crowd funding or
decentralized autonomous organizations, contributors or members are able
to decide together how the funds are spent, increasing accountability and
transparency.

C.2 Ledger Level DAO

A Decentralized Autonomous Organization’s (DAO) guiding principle is the
foundation of an organization-wide democratic process governing all funding
proposals. In an industry rife with speculation and “Initial Coin Offerings”
(ICOs) attracting millions in funding, a DAO provides both accountability
and transparency. In the following example, we propose a DAO structure
that can be built on the Nexus framework. First, this DAO would receive
an organizational signature chain, with other “founders” of the organization
as the other signatories. The data chain can publish certain references to
by-laws or simply rest on the genesis transaction. When making a funding
proposal, they would create a receive account contract with stipulations and
a requirement for the movement of any NXS be collected by a token vote.
This collective authorization can be seen by the diagram below:
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Token issuer(s) (A, B, and C in the above diagram) would be required to
propose a budget at the initial fund raising event, and for their token hold-
ers to ratify future movements of tokens. This creates a secure ledger-level
series of organizational contracts that allows businesses, consumers, and in-
vestors to function in a more streamlined and connected way. Nexus aims
to transition the Nexus Embassy(s) into a global DAO called a Distributed
Autonomous Community (DAC) and in so doing, honor its founding prin-
ciples: by the people, for the people. More details on how this will function
will be delivered in the Obsidian white paper.

C.3 Tokenized Data

Signature chains can prove ownership on a distributed ledger by publishing
a meta-data representation (token data) regarding a work of art, a logo or
slogan, a domain name allocation, patents or copyrighted material. Anyone
can access copyrighted material by simply purchasing and holding the token
from a secondary market. As requirements for this data are set within the
parameters of the copyright contract, when someone pays a license fee for the
use of this published data, this fee is then distributed to the token holders.
This concept will enable anyone to buy or sell shares representing physical
objects, art, music or any other agreed means, allowing anyone to create,
distribute and monetize on a single, accessible platform.

C.4 Supply Chains

Signature chains and cryptographic identity can also facilitate supply chains,
which are often cumbersome and inefficient. Supply chains on a distributed
ledger can trace the history of products from start to finish, providing trust-
worthy information regarding standards and certifications. Advanced con-
tracts can automate many processes, eliminating costly delays and reducing
double handling. Greater transparency of supply chains can allow consumers
to make informed choices that reward sustainable and ethical practices.

24



D Locator/ID Separation Protocol (LISP)

D.1 Level of Indirection for Addressing and Routing

LISP operates at the OSI Network layer and is an architecture that decouples
an address identity from address location. In the current Internet architec-
ture, an IP address combines who you are with where you are connected
to the network. LISP extends the Internet architecture in an incremental
and compatible way to allow IP addresses to come in two forms, end-point
IDs (EIDs) and routing locators (RLOCs). This level of indirection allows
network overlays to be built where EIDs are on the periphery of the overlay,
and RLOCs are routable addresses in the Internet underlay routing system
that operates today. The performance of the underlay routing system re-
mains unchanged, as the mapping and linking of EIDs to RLOCs occurs
entirely on the overlay.

D.2 Nexus over LISP

The Nexus applications and daemons, which run at the OSI Application
layer, send unicast and multicast packets that are sent and received by EID
addresses. LISP, which runs at the OSI Network layer, finds where EIDs
are topologically located by looking up EID addresses in a mapping system.
The mapping system is decentralized and distributed for security and scal-
ability and is used to find one or more RLOCs for an EID.

Each Nexus wallet or miner is assigned a single EID address. If the Nexus
node has multiple network interfaces, they are assigned either statically or
dynamically with an RLOC address. LISP registers a signed mapping for
EID-to-RLOCs to the mapping system. If the Nexus node moves, the EID
remains allocated and new RLOCs are allocated and registered by LISP to
the mapping system. This allows applications to remain connected without
needing to deal with node mobility issues.

Nexus nodes can also be grouped in LISP multicast groups, which can be
addressed through IP multicast group addresses. The LISP mapping system
tracks and authenticates the location of nodes on the overlay, even as they
change physical location or connection point.

25



D.3 Another Layer of Security

The LISP overlay provides another layer of security for Nexus applications
by supporting crypto-EIDs, which are similar to Nexus wallet addresses.
Crypto-EIDs are hashes of public-keys where the mapping system stores
public-keys and performs LISP message verification on each control-plane
message. At the data-plane, all Nexus packets sent on the overlay are en-
crypted and contain packet integrity checking so packets are immutable and
cannot be eavesdropped on.

The LISP overlay makes use of several state of the art cryptographic mecha-
nisms. In the control-plane, ECDSA and SHA-256 are used for digital signa-
tures with dynamic one-time key exchange. In the data-plane, many cipher-
suites are available for packet encryption and integrity verification such as
AES-CBC, AES-GCM, ChaCha20 ciphers, and SHA256 and Poly1305 ICV
hash functions using Elliptic-Curve 25519 dynamic key exchange.
For the Nexus user, this level of security allows your communications to
remain private, preventing any eavesdropping between peers.

D.4 Advanced Level of Scalability

Since many computers and devices sold today have multiple network inter-
faces, they are usually only used to provide redundancy. So if the Wi-fi
interface goes down then the LTE interface is used. When Nexus and LISP
run together on a device, each network interface is assigned an RLOC ad-
dress. Remote nodes that want to communicate can use either a RLOC
address or load-share traffic across all your network interfaces. The remote
node can even test for ”underlay distance and latency” and switch back and
forth, or disproportionately send to one RLOC versus another.

The integration of Nexus and the LISP overlay helps achieve scalability
through reduced network latency in a truly unique manner. Furthermore,
the 32-bit IPv4 address used by most network protocols will be unable to
support the future growth of networked devices. Nexus and the LISP overlay
will use 128-bit IPv6 EID addresses that can accommodate far more devices
on the network.

Together, Nexus and LISP form the world’s first truly distributed, secure
and scalable application and infrastructure network.
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D.5 Open Standards and Open Source

LISP began in the Internet Research Task Force (IRTF) in 2007 and then
transitioned to standards development in the Internet Engineering Task
Force (IETF) in 2009. Use case development and protocol extension work
still continues in the IETF LISP Working Group which meets 3 times a
year. There are many vendor and open-source implementations available
and thousands of deployments in enterprise and service provider environ-
ments.

For more information about LISP, you can find presentations, demos, testi-
monials, and detail specifications at http://www.lispers.net.
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