

 Technical Paper v1.0

1 | P a g e

Contents
Introduction .. 3

1 The Blockchain .. 4

1.1 Description .. 4

1.1.1 Subsystems.. 4

1.1.2 The P2P Network ... 4

1.1.3 The Global Shared State and Execution Layer ... 4

1.1.4 Consensus Layer .. 5

1.1.5 Block Execution Layer .. 6

1.2 Graphene Trading Engine .. 6

1.3 Transaction Types ... 7

1.4 Transaction Fees ... 7

2 Tokens ... 8

2.1 DasCoin ... 8

2.2 WebEuro ... 8

2.2.1 Issuance Authority... 8

2.2.2 Pegging Mechanism .. 8

2.3 Cycles .. 8

3 Minting and issuance .. 9

3.1 Description .. 9

3.2 Licence levels .. 11

4 Governance ... 12

4.1 Structure ... 12

4.1.1 Voting Nodes ... 12

4.1.2 The DasCoin Board .. 12

4.1.3 Chain Authorities ... 13

5 Frequency ... 16

5.1 Description .. 16

5.2 Global Frequency .. 16

5.3 Centralize vs. Calculation Algorithm.. 16

5.4 Upgrades ... 16

5.4.1 Description .. 16

2 | P a g e

5.5 Current Cycle implementation .. 17

5.6 Bonus Cycles ... 17

5.7 Cycles Issuance authority description ... 17

6 Nodes .. 18

6.1 Master Nodes .. 18

6.2 Ledger Nodes .. 18

6.3 Node Operations ... 19

6.3.1 Create Witness Operation ... 19

6.3.2 Update Witness Operation .. 19

6.3.3 Remove witness operation .. 20

6.3.4 Activate witness operation .. 20

7 WebWallet .. 21

7.1 Security ... 22

7.2 Validator ... 22

7.2.1 Account recovery .. 23

7.3 Identity management .. 23

7.3.1 KYC .. 23

7.4 Sample UI .. 24

8 API ... 25

8.1 Websocket Calls & Notifications ... 25

8.1.1 Requesting API access ... 26

8.1.2 Database Notifications .. 27

8.1.3 Example Session .. 28

8.2 Operations .. 28

9 Appendix A: Blockchain API .. 29

9.1 Database API ... 29

9.2 Account History API... 46

9.3 Crypto API ... 47

9.4 Network Broadcast API ... 48

9.5 Network Nodes API ... 48

9.6 Wallet API ... 49

10 Appendix B: Operations .. 83

3 | P a g e

Introduction

DasCoin has been designed to solve the core problems inherent to storing and exchanging value. The

DasCoin Blockchain is a mutual distributed ledger that creates and distributes cryptographic assets, and

then securely facilitates their storage and exchange. A prime objective of DasCoin is to use the

infrastructure of a digital asset system to build an effective network of trust, enabling all participants

and stake holders to share a common goal of increasing the value of the network and cultivating its

growth. A private, permissioned blockchain architecture has been incorporated due to its enhanced

security, inherent efficiency, and ability to scale more easily (due to deployment control). Fortifying this

secure foundation is the authentication of all users in accordance with bankingstandard KYC (Know Your

Customer) requirements and the implementation of a “hardware required” digital wallet system.

However, just like every other system of value DasCoin must establish a few fundamental elements.

These include defining: initial money supply, initial distribution, basis of value, expansion/contraction

mechanisms of the money supply, who controls the means of production, and the allocation of inflation

(and/or allocation of credit). DasCoin offers a hybrid structure to solve the issues associated with these

economics-based elements.

This technical whitepaper will go in depth about the technical specifications of the DasCoin blockchain

that will establish these fundamental elements. We will start with a basic description of the blockchain

to give the reader a general overview. We will follow up with more chapters that will clarify the specific

individual parts that are used in the blockchain. At the end we will include a full list of API calls that are

used in this paper. To finish off, we added an appendix for a more detailed explanation about the API

itself.

4 | P a g e

1 The Blockchain

1.1 Description
The DasCoin Blockchain is a distributed ledger-based payment and token exchange system that supports

the base system tokens (Cycles, DasCoin) and enables the creation of an arbitrary number of different

asset tokens. The DasCoin Blockchain determines block production by assigning authorized nodes

(master nodes) as block validators. The system relies on the centralized distribution of DasCoin through

the minting process as well as a semi-decentralized governance mechanism in which the DasCoin Board

determines chain parameters and determines block producers from eligible candidates.

The DasCoin Blockchain is built upon the Graphene toolkit, which in itself is the direct basis for the

Bitshares blockchain and indirectly for the Steem and EOS blockchains. The DasCoin blockchain inherits

the base consensus model from Graphene, as well as the P2P network, the execution of user operations,

and system wide on-block-produced actions. The main differences lie in the implementation of

governance and DasCoin distribution (minting), as well as the storing of user states and the

implementation of user and administrative actions via on-chain operations.

1.1.1 Subsystems

The DasCoin Blockchain can be seen as a union of subsystems which handle the tasks of facilitating

communication between nodes in the system, executing user and block operations, updating the global

shared state, and maintaining the ledger of confirmed transaction updates.

1.1.2 The P2P Network
The P2P node network is the base layer of the DasCoin blockchain. It is a part of the Graphene Toolkit.

The network is responsible for handling connections between nodes and user endpoints (wallet

instances) through websockets, as well as relaying messages between nodes.

Upon receiving messages from a client endpoint, the network layer handles unmarshalling of the

message and passes it off to the operations layer. The network layer also marshals the response back to

the client (if any) regarding the success of the state update, query or interaction.

The network layer also handles the connections between nodes. The nodes do not have a discovery

protocol, relying instead on preconfigured addresses. The network layer maintains the gossip state

update protocol. Each node broadcasts relevant messages such as valid transactions and created blocks

to all known nodes. It is left to the consensus mechanism and the global shared state fto handle

deduplication of updates.

1.1.3 The Global Shared State and Execution Layer
The Global Shared state is an in-memory database of all relevant user and system data objects. It is a

part of the Graphene Toolkit. All nodes have the entire copy of the global shared state. All objects have a

unique identifier based on a three-number system (denoting domain, type and in-order number of

instantiation). All object types can be accessed via a generalized object API, while more specific

formatting APIs handle client needs.

5 | P a g e

The Global Shared State features a transaction rollback mechanism, necessary for establishing

consensus. The rollback mechanism can detect and roll back the state in case of a dominant block

history emerging, up to a maximum defined divergence point. This is most commonly manifested on

block updates, where pending transaction state is discarded and replaced with the result of the

confirmed transactions in the blocks.

The execution layer verifies and executes user-initiated operations. The operations received from the

network layer are first checked for the presence of correct signatures. If an operation is validly signed, it

is then first validated for checks independent of the current state (ie. for sending negative balance on

transfer). If the operation is properly signed and valid independent of the current state, it is then

checked against relevant objects in the state (ie. a transfer would check if the FROM account balance is

sufficient). Once the operation is fully verified, the state is locked, and the operation is executed on the

current state, performing a state transition. This multi-step validation system ensures an early fail of

invalid transactions and lowers the time of execution. Operations can be additionally bundled into

transactions, with similar functionality as in database management systems. Executed transactions are

sent to the network layer to be rebroadcast to all nodes. The execution layer also features a

deduplication mechanism, making sure that two of the same transaction cannot be executed.

Executed transactions (and thus operations) are placed in a pending state. They are verified and

executed but have not been confirmed by consensus. The state of the node always matches the last

transaction executed, regardless of its confirmed state. Once a block update is received, it is checked for

signatures and whether it matches the block production schedule (is it signed by the right block

producer at the right time). If that is the case, the transactions are rolled back to the last joining point -

the next block in the blockchain. Unless there is a chain split, this is usually the last block. The

transactions from the block update are then executed in order and a new confirmed state is formed.

1.1.4 Consensus Layer
The consensus layer ensures byzantine fault tolerance - the guarantee that the entire network can

converge to a globally shared state. It also updates the local copy of the block ledger as well as

maintains the set of execution rules and platform rules. The consensus layer is a modified Graphene

implementation. DasCoin blockchain consensus is based on a known set of validators, which are nodes

that have an authorized block signing private key. A block signed with the correct master key is properly

signed. The block producers are added to the list of active block producers by the DasCoin Board,

through signing the appropriate operation. The board also has the privilege to remove a master node

from the block producer list.

The block production algorithm proceeds in rounds. Each block producer is shuffled into a schedule

which is valid for a single round. Each block producer is given a time slot based on their respective

position within the schedule. Each slot is the length of a unit of block time (initially set to 6 seconds). It is

the duty of the block producer to collate all user transactions, verify and execute them, produce a

signed block and send it through the network. The nodes actively listen to block updates. If a block

update is received by a node on the network, and it is properly signed, it is checked against the

schedule. If the block producer is not scheduled to produce a block at that moment in time, the block is

rejected. This ensures that all block producers have a chance to produce a block, thus distributing trust

6 | P a g e

through the network, while at the same time maintaining a fast and predictable speed of confirmed

transactions.

1.1.5 Block Execution Layer
Certain system wide actions can be attached to the predictable rhythm of producing blocks. Each node

executes certain system defined code when a block is produced. This can also be set to a multiple

number of blocks (every 10th block, for example, corresponds currently to each minute). This enables

actions that are time based, with the maximum resolution of the block time (currently 6 seconds). The

process of minting DasCoin, parts of trade engine operation, as well as cleanup of unused memory is

implemented on this layer.

The system also periodically reserves time (currently each day) for a system wide maintenance interval

during which block production is stalled. This is to allow all nodes to compute resource intensive

changes of state - as no parallel execution is available. All changes that require reading or writing to a

large part of the state (such as upgrades) are relegated to this interval.

1.2 Graphene Trading Engine
The decentralized exchange (DEX) is built on top of the consensus and operations layer of the

blockchain. It’s a native application feature that does not rely on user defined code execution, as all

functionality is built in to the node software itself. The DEX and trading engine are both parts of the

Graphene toolkit.

The DEX allows users to create limit orders to trade different assets on the DasCoin blockchain. At the

present moment, the exchange supports the trade of DasCoin (DASC) and WebEuro (w€) assets. When a

user creates a trade, it is placed on a market. The market tracks all open and filled orders for a certain

trading pair and tracks the last price and 24h volume. There are two markets defined (DASC:w€ and

w€:DASC), but the DEX supports an arbitrary number of markets (as well as assets). Any order is

matched by the engine by the criteria of best price and time of creation once a fitting order is created on

the DEX. The orders can be partially filled, with the remainder remaining in an open position. A user also

has the option to create a fill-or-kill order that must be matched on creation. Users may also cancel

open orders at any time.

The DEX is enabled by user signed operations that create and cancel limit orders. The user must properly

sign a valid create limit order operation in order to create a limit order. The operation is considered valid

if the user has enough funds to create the order. Once the operation is executed, the trading engine will

attempt to match the order. This is NOT tied to block creation or the consensus mechanism of

confirming transactions. The trading engine will proceed to search all limit orders for a given market pair

sorted by price ratio and time of creation. If a match is made, and the order is fully filled, the trading

engine will exchange the assets between trading accounts, swapping the appropriate amounts of tokens

to complete the trade. If the order is partially matched, or if it is not matched, a unique order object is

created on the global share state, and the user is notified of its id. This unique order object contains the

information about the amount and type of tokens to sell, as well as the minimal amount to receive. The

values are equal to the original values input by the user in the create limit order operation if the order

was not filled, or they are adjusted to match the partial filling of the order if a match has happened, but

7 | P a g e

the order was not fully filled. This object persists in the state until it is either filled entirely by another

created limit order or cancelled by the user. The user may cancel an open limit order by properly signing

a valid cancel limit order operation. The operation is valid if it contains an id of an existing limit order

object and is signed by the creator of the object (and the limit order itself).

An important thing to note is that trades are executed immediately, regardless of confirmation. To

achieve additional confidence, the user may wish to wait for a confirmed limit order to appear, meaning

only such order that was confirmed in a block, and then trade in accordance with the confirmed order.

Block Types

As explained in the Description section of this document, the DasCoin blockchain contains a mechanism

for executing system code when a block is being produced. This mechanism is used on Minting blocks,

which are blocks designated to distribute DasCoin by the way of the minting queue. Blocks may also be

designated to perform staking rewards and to execute delayed user code. For more information about

these operations see Appendix: Operations.

1.3 Transaction Types
As explained in the Description section of this document, the DasCoin blockchain is based on user signed

operations that modify the global shared state. All operations are bundled into transactions in such a

way that all operations in a transaction must pass in order or they all fail and are rolled back. Each

transaction thus must contain at least one operation.

Operations can be divided between authority and user operations. Authority operations must be signed

by a named authority and are responsible for governing the chain and handling actions that require

trust. A good example would be choosing block producers (handled by root authority) and issuing

licenses (handled by license authority). Both of these actions require oracle input from outside the

chain, and as such must be signed by trusted authorities. User operations can be signed by any user.

They are actions that manipulate user state (such as token balance, open trade orders, etc.). User

operations are valid only in the bounds of user state (and thus must be properly signed).

For more information and a list of all operations see Appendix B: Operations.

1.4 Transaction Fees
Almost all exchanges and digital wallets charge a fee for all conducted transactions. And in almost all

cases, this fee is calculated in the currency you are trading and comes in the form of a percentage of the

amount being traded. However, since the cryptocurrency market is so volatile, and the price of a coin

can rise or fall drastically in a short period of time, the actual fee a user pays depends on the current

value of the coin they are trading.

To avoid this kind of volatility, instead of charging fees in DasCoin, we will instead be using Cycles – the

heart of the DasCoin platform – for our transaction fees. Any transaction a user conducts, regardless of

the amount they are sending, will always cost only one Cycle. If a user uses up all their Cycles, they’ll

always be able to purchase more. The last DasCoin in a user’s account is always reserved for the

purchase of Cycles, so they can never get into a situation when they have neither Cycles nor DasCoin

with which to purchase them.

8 | P a g e

2 Tokens
2.1 DasCoin
DasCoin is a hybrid currency designed to combine the best qualities of decentralized cryptocurrencies

with the best aspects of centralized currencies – and eliminate their respective weaknesses. DasCoin is

the convertible “store of value” unit that serves as the foundation of the digital asset system. DasCoin is

our main crypto asset, and as previously described, customers acquire DasCoin through licenses and

minting.

2.2 WebEuro
WebEuro is a cryptographic asset defined in the DasCoin Blockchain that represents the Euro

denomination.

2.2.1 Issuance Authority
Issuance authority that is responsible for WebEuro is called issue_webasset, you can find more details

about this operation in the Appendix section.

2.2.2 Pegging Mechanism

As mentioned before, WebEuro is an equivalent of a FIAT currency Euro, so its value has a fixed

exchange rate. You earn WebEuro through trading of DasCoin on the internal market or through

NetLeaders Commission bonuses. Customers can cash out their WebEuros into the same amount of

Euros manually through our NetLeaders platform.

2.3 Cycles
Cycles are a cryptographic asset defined in the DasCoin Blockchain. Cycles represent stored capacity

within DasNet and can be used either for paying fees in the DasCoin Blockchain, for paying network

services, or they can be submitted to the minting queue to be exchanged for DasCoins. A cycle is an

indivisible asset, meaning that we cannot have a half of a cycle, or a quarter. Cycles can only be acquired

through the purchase of a system license using either Bitcoin or Euros or can be bought for DasCoin in

order to buy fees on the DasCoin Blockchain.

Internally, cycles are represented as an asset, equal to WebEuro or DasCoin, but they cannot be traded

on the Exchange nor can they be transferred from one wallet to another. They can still be transferred

from a license on a vault which has been tethered to a wallet.

Periodically, in accordance with a predetermined Upgrade Interval, all Cycle balances will experience an

Upgrade and those balances in the accounts will double. If Cycles are already in the DasCoin Minting

Queue, these Cycles will be unaffected (unless they are associated with an account that has a Frequency

Lock).

9 | P a g e

3 Minting and issuance
3.1 Description
The process of producing and distributing new DasCoins is known as Minting. Minting allows a person or

entity to store value in the form of DasCoin. In order to obtain DasCoins people can submit Cycles to the

network and then be assigned a place in the DasCoin Minting Queue. The Minting Queue functions on a

first-in-first-out basis. DasCoins are distributed to the account that is next in line in the distribution

queue. At each DasCoin Distribution Interval a specific amount of DasCoins are distributed to

participants in the queue.

The amount of DasCoins a user receives is regulated by an adjustable conversion factor called

Frequency. DasCoin distribution functions in such a way that the amount of Cycles submitted divided by

the Frequency, equals the number of DasCoins that will be distributed to that person. Cycles are

deducted at the time of submission to the “minting queue”, and at the time of distribution the DasCoins

are automatically transferred to the account by the blockchain software.

The total amount of DasCoins that can be minted is capped at 2 to a power of 33.

There are no parties (neither executives nor developers) who are able to pre-mint, pre-mine or pre-

distribute DasCoins to themselves. Cycles can only be received in exchange for value transferred to the

system, and Cycles must be submitted to the system for there to be a direct distribution of DasCoins

through the minting process.

For a customer to mint a DasCoin, they need to have cycles. Cycles are a resource defined in the DasCoin

Blockchain. They can only be acquired through the purchase of a system license (NetLeaders) using

either Bitcoin or Euros. They can either be used for network services or submitted in exchange for

DasCoins. Cycles can only be received in exchange for value transferred to the system, and a user must

submit them to the system in order to acquire DasCoins through the minting process.

10 | P a g e

Depending on the conversion factor (frequency), a customer will receive a certain amount of DasCoins

at the end of the minting process. Frequency is the conversion factor used in the minting process of

Cycles to DasCoins. The value of the Cycles you have in the blockchain is secured by the distributed

ledger. The precise amounts are encoded in the blockchain state and are currently fixed. The only way

to change the base amount of Cycles a license provides is by a vote involving all committed shareholders

(of DasCoin), either through a direct vote or through delegates.

The Blockchain has a so called Minting queue that has the following elements:

• Amount of Cycles – the number of Cycles that where submitted by customers to the queue

• Frequency – a value determined by the license from which a user submits Cycles

• User ID – a unique account identifier

A customer can submit a certain number of Cycles from a license to the minting queue. The minting

mechanism has two elements that determine how the queue is processed. The moment in time that the

queue is processed is called a DasCoin reward event. During one DasCoin reward event there is only a

certain amount of DasCoins that can be produced and distributed.

• Reward interval – the time interval between each DasCoin reward event

• Reward amount – the amount of coins that will be produced and distributed during the DasCoin

reward event

For example, a Pro license has a higher number of Cycles than a Standard license, so we take a smaller

amount of Cycles from the Standard license and a larger amount from the Pro. When DasCoin are

minted, we redistribute the larger portion to the client who owned the Pro license and the smaller

portion to the client who owned the Standard.

Your Cycles will begin to be converted to DasCoin and added to your wallet when your license is tapped

for Cycles (which happens chronologically based on when your license was purchased i.e. clients who

purchased licenses before you did will have their Cycles submitted before you will).

As more of your Cycles are used, they will, eventually, reach the determined amount of DasCoin that

your license is supposed to receive. However, this is not an 'immediate' thing. It is a process that

accumulates over time.

Upon license purchase Cycles are migrated to the WebWallet vault and the Cycles from the vault are

submitted to the minting queue with a certain Frequency lock.

11 | P a g e

To calculate the amount of DasCoin you would receive from your initial submission, you would divide

the amount of Cycles (C) associated with your license level by the Frequency Lock (FL) given at time of

license activation.

When an upgrade period is reached, at this time, the amount of Cycles that have, thus far, been

submitted to the DasNet system are matched by NetLeaders and the resulting amount of Cycles are

resubmitted to the DasNet system for minting.

3.2 Licence levels
As previously mentioned, to participate in the minting of DasCoin, a customer needs to acquire a

NetLeaders license.

A license provides the customer with three things:

• Authentication: Customers identity will be verified.

• Authorization: The customer will receive a license certificate and will be able to generate the

keys to a WebWallet that will provide them access to DasNet.

• Capacity: The customer will receive Cycles – units of network capacity on DasNet.

Depending on the level of their license, a customer will receive a certain amount of Cycles that he or she

can use to mint DasCoins.

There are currently 6 types of licenses:

License
Name

Number of
Cycles

Bonus
Cycles

Network
Upgrades

Price Frequency

Standard 1100 440 1 100€

Visit our website to see the
current Frequency

Manager 5500 2200 1 500€

Pro 24000 9600 1 2000€

Executive 65000 26000 2 5000€

Vice-
president

225000 90000 2 12500€

President 325000 130000 3 25000€

As this is something that can be subjected to change, you can see more details about Licenses and our

marketing incentives through our NetLeaders platform here: https://netleaders.com/en/products

https://netleaders.com/en/products

12 | P a g e

4 Governance
DasCoin is governed by elected individuals and businesses. The so-called committee (a set of many

individuals), can change blockchain parameters such as block size, block confirmation time and others.

Most importantly, though, they deal with the business plan of the blockchain and tweak costs and

revenue streams (mainly transaction fees). Fortunately, the shareholders have the final say to approve

the executive committee.

Hence, we see businesses competing for seats in the committee to define blockchain parameters.

If business ideas requires certain blockchain parameters or a particular set of fees to be profitable, there

are several options:

• Argue with shareholders to approve committee members that vote in their favour

• Get elected as a committee member by showing that the business is worth being available in

that particular chain

• Deploy the innovative business and have the shareholders approve the upgrade

4.1 Structure
4.1.1 Voting Nodes
Voting Nodes are non-authoritative influencers of the DasCoin Blockchain. These nodes do not control

any of the daily functions of the DasCoin system, but fully control who sits on the DasCoin Board and

what proposals are passed within the system. Voting Nodes represent significant stakeholders who

have demonstrated that they have a long-term view on DasCoin, and therefore are given the privilege

of influence over chain governance. Any qualified Voting Node can initiate a proposal. The DasCoin

Board is responsible for organizing and presenting the proposals to the Voting Node population. There is

also a mechanism within the voting system that allows the Voting Nodes to directly present a

referendum to their membership without going through the Board review process (to prevent the Board

from withholding a certain proposal from the Voting Nodes).

4.1.2 The DasCoin Board
The DasCoin Blockchain enables a governing board to regulate the parameters of the network. The

DasCoin Board will be comprised of members elected by the Voting Nodes.

The role of the Board is to:

1. Propose and modify chain parameters to support the normal functioning and growth of the

network

2. Delegate certain executive roles to certain chain executives (such as issuing licenses and

authenticating said licenses)

3. To act as a check on the power of said executives by having the ability to terminate their access

to the network.

The Board itself has no control on the state of the database or the construction of the DasCoin

Blockchain and is programmatically prevented from making any changes to it. Since the network itself

manages and maintains the state and the transaction ledger, the only way to make any undesired

change is to subvert the majority of Master Nodes. The Board is designed to consist of 7 individual

13 | P a g e

Directors, each of whom is bestowed with full voting privileges. Generally, each Director serves for a 6-

year term, though initial Directors will be serving staggered terms (of 2-6 years) to ensure continuity of

experience. A minimum of 3 Directors are required for the governance of the DasCoin ecosystem, and as

many as 9 may serve on the Board. In addition, there is an Ombudsman member of the Board, who does

not vote and does not hold any responsibilities within the Board, but who attends all Board meetings

and provides a degree of independence and transparency to the Board’s governance process. Finally,

there is an Executive Director who works for the Board and is responsible for ensuring that all of its

decisions and initiatives are enacted and enforced. The Executive Director attends all Board meetings

but is not permitted to vote. The Executive Director is responsible for directly overseeing all Chain

Authorities

4.1.3 Chain Authorities
Chain authority roles exist to handle smooth inputs to the Blockchain of user data that exists outside of

the system. The problem with fully decentralized systems is the fact that they cannot have reliable

inputs: for example, Bitcoin is created internally in the Bitcoin blockchain and is merely transferred

around. In order for Proof of Value to work, there must be certainty that the user is actually bringing

value to the network. Value cannot exist without an independent observer – and so the only way to

verify that the user has submitted value to the system is to maintain an impartial observer.

Each authority role is set up in such a way that:

1. There is no way for the authority to make a meaningful unwanted impact on the state of the

network as the network can fall back to a failsafe state.

2. The actions of the authority are checked by a separate authentication authority and there are

programed measures to assure there is minimal chance of collusion.

3. There are incentives to perform in the best interest of the network.

4. Any malicious action by the chain authority is transparent and will lead to that account being

marked as untrustworthy, shut off from the network and penalized.

4.1.3.1 DasCoin Board

The Board sets the procedures and ensures the proper execution of the following:

• The level of the Frequency at each 2-week interval. The process involves the Board selecting

which of a range of algorithms best reflects the current growth state of the network. The

primary factors considered include:

o Overall amount of Cycles in the system

o Amount of Cycles authorized in the most recent 2-week period

o Velocity of Cycle growth in previous periods, and projected Cycle growth within the

system.

• The size of the Minting Blocks at the start of each Upgrade Interval

• The size of the Super Blocks and Treasury Blocks

• The proposals to be submitted to the Voting Nodes, the use of funds from Treasury Blocks

• The authorization of Master Nodes and Ledger Nodes within the DasNet infrastructure

• Intervention at times of crisis, and other elements

14 | P a g e

The Executive Director oversees the performance of all chain authorities and KYC functions, manages

the flow of proposals for the Board to consider, facilitates referendums if the proper thresholds have

been surpassed, is responsible for enforcing all Board initiatives and decisions, and is fully accountable

to the Board for all operations within the system.

Chain authorities oversee the issuance and authentication of Licenses and WebEuros, under the

supervision of the Executive Director.

Upgrades automatically occur on a system-wide basis on specific dates, starting 108 days from the

launch of the DasCoin Blockchain. It is unlikely that this interval will be altered at any point in the future,

but it remains within the capability of the Board to make such an adjustment should they feel it is

needed.

Listed below is the set of parameters that the DasCoin Board can propose changes upon:

• License Issuing Authority – The privilege to assign a License to a Vault Account and to determine

the level of license.

• License Authenticating Authority – The ability to cancel the issuance of a new License to an

account in the event of error.

• WebEuro Issuing Authority – The privilege to transfer a WebEUR balance to a Vault Account.

• WebEuro Authenticating Authority – The ability to cancel the issuance of a WebEUR balance to

an account in the event of error.

• Cycle Upgrade Date & Interval – The exact date of an Upgrade and the Upgrade Interval. The

Upgrade Interval is current set at 108 days and is not expected to ever be changed.

• Frequency – The conversion factor by which Cycles can be exchanged for DasCoins as part of the

minting process.

• Block – A measurement for accumulated transactions. The system currently records a block in

accordance with a designated period, known as a Block Interval.

• Block Interval – The time it takes to create a confirmation, of a single block of transactions. By

default, transactions are confirmed every 6 seconds. In the future, this will be decreased as the

code base is further optimized.

• Minting Block – The amount of DasCoins distributed at the completion of each Minting Interval.

• Minting Interval – The time it takes for a Minting Block to be created. The default Minting

Interval of the system is 10 minutes and is not expected to ever be changed.

• Maintenance Period – The number of blocks that must pass before maintenance is performed

on the Blockchain.

• Maintenance Skip Slots – During a maintenance period some blocks will be skipped: this

parameter sets how many the system should skip while performing a Maintenance Period.

• Super Block – The amount of DasCoins distributed at the completion of each type of Super Block

Interval. The size of Super Blocks is expressed as a percentage of the cumulative DasCoins

distributed by Minting Blocks within that Super Block Interval.

• Super Block Intervals – The time it takes for Super Blocks to be created. There are 3 Super Block

Intervals within the system, each of which corresponds with a type of Super Block. The Voting

Super Block Intervals are 1 week in duration, the Ledger Super Block Intervals are 2 weeks in

duration, and the Master Super Block Intervals are 3 weeks in duration.

15 | P a g e

• Treasury Block – The amount of DasCoins distributed at the completion of a Treasury Block

Interval. Like Super Blocks, Treasury Blocks are expressed as a percentage of the cumulative

DasCoins distributed by Minting Blocks within the Treasury Block Interval.

• Treasury Block Interval – The time it takes for a Treasury Block to be created. Treasury Block

Intervals are 4 weeks in duration.

• Maximum Block Size – Maximum size in bytes that a block can be that is signed to the

Blockchain.

• Maximum Transaction Size – This is the maximum allowable size in bytes for a single

transaction.

• Maximum Witness Count – This is the maximum number of Master Nodes that could be active

on the network.

4.1.3.2 License Issuing Authority

Holds the privilege to assign a License to a Vault Account and to determine the level of license.

4.1.3.3 License Authenticating Authority

Holds the ability to cancel the issuance of a new License to an account in the event of error.

4.1.3.4 License Administrator Authority

Holds the ability to manage license limits, upgrades etc.

4.1.3.5 WebEuro Issuing Authority

Holds the privilege to transfer a WebEuro balance to a Vault Account.

4.1.3.6 WebEuro Authenticating Authority

Holds the ability to cancel the issuance of a WebEuro balance to an account in the event of error.

4.1.3.7 Cycle Issuing Authority

Holds the privilege to issue a Cycles to a Vault Account.

4.1.3.8 Cycle Authenticating Authority

Holds the privilege to allow cycle operations.

4.1.3.9 Registrar Authority

Holds the privilege to register an account.

4.1.3.10 Personal Information Authority

Holds the privilege of validation of personal information and key roll back.

4.1.3.11 Wire out Authority

Holds the privilege of Handling of wire_out payments.

16 | P a g e

5 Frequency
5.1 Description
Frequency is the conversion factor used in the minting process of Cycles to DasCoins. As the DasNet

expands, a number of positive dynamics occur: risk is reduced, the circle of users widens, and the

infrastructure of the system grows larger. Consequently, the value of a unit of stored value - DasCoin - in

the system increases in relation to a unit of stored network capacity - Cycle. This results in more Cycles

being needed to produce a single unit of DasCoin. This dynamic is reflected in an increase in the

Frequency, which is proportionate to the incremental growth of the network. Creating an index based

on the initial network size and increasing that index in direct proportion to the increase of the network

size allows a steady decrease in the amount of DasCoin that is put into circulation. Steadily decreasing

the level of DasCoin actually put into circulation allows for a certain amount of control over any

potential loss of value due to inflation and ensures that DasCoin’s monetary value and exchange rate are

maintained and kept steady.

5.2 Global Frequency
There is basically no difference between the Global Frequency and the Frequency that you use in the

calculation. Global Frequency is just a current representation of the Frequency on our website.

However, during the calculation we use the frequency number that was the Global Frequency when you

purchase the license. For Example, if the Global Frequency when a customer bought their license was

“15”, this number will be used later when that customer mints their coins, disregarding the current

Global Frequency. We call this “Frequency locking”, as frequency is locked to the number that was in

effect when you purchased the license.

5.3 Centralize vs. Calculation Algorithm
Currently we are manually calculating the Frequency based on the network size and number of
coins. However, we will soon implement a calculation algorithm which will do this automatically.
As described in the “Minting” section, we take the total number of coins and calculate the frequency

based on the distribution forecast, so we can control the number of DasCoins that will be available at

any given time.

5.4 Upgrades
5.4.1 Description
Cycles are issued to licensees in generations (lasting 2-3 months). The current generation of Cycles

began operations at 100% efficiency. However, the efficiency of Cycles gradually decreases over time

due to the impact of Moore’s Law and related technology dynamics. The efficiency of the current

generation of Cycles is measured against the potential efficiency of the next generation of Cycles.

Whenever the efficiency of the current generation of Cycles drops to 50%, an Upgrade occurs which

immediately doubles the number of Cycles available to the network. This is why the number of

“Upgrades” stated on your software license is so important – the more upgrades you are eligible for, the

more times your Cycles have the opportunity to double in number.

Every 108 days all Cycles that haven’t been submitted to the Minting Queue are doubled to reflect the

growing power of the network. This is a powerful reward, allowing you to benefit as the efficiency of

DasNet increases.

17 | P a g e

5.5 Current Cycle implementation
As mentioned before, Cycles are implemented as a cryptographic asset, and they do not have decimals.

This means that, in the case that you have Cycles, the lowest value that you can have is 1 Cycle.

5.6 Bonus Cycles
With each purchased license, a customer is also rewarded with Bonus Cycles. The amount of added

Cycles is 40% of what they receive just from license purchase. This is a part of our promotion event and

also our way of saying “thank you” to new people who are helping us to expand the network.

5.7 Cycles Issuance authority description
The authority responsible for the issuance of Cycles is called issue_cycles_to_ license. You can find

details in the Operations Appendix.

18 | P a g e

6 Nodes
6.1 Master Nodes
Master Nodes are exclusively hosted in data centers based on a requirement that access to the server

rack is physically secured. They are compatible and connected to other data centers around the world

over leased direct lines affording reliable and highly connected bandwidth. This approach gives DasNet

control of the entire path between data centers and permits prevention of man-in-the-middle attacks as

well as Denial of Service and Distributed Denial of Service attacks among the nodes that maintain the

Blockchain and its connectivity to service. DasNet has 2 additional layers for handling transaction

capture and network connectivity in addition to the core infrastructure features mentioned previously.

The server configuration involves state-of-the-art quality components and protection for high-end

threat prevention and hardware-based firewall solutions that are commonly utilized by banks and other

highly secure environments. In addition, DasNet is hosted on powerful servers that operate with 44

cores per server which provides efficient space and power consumption to scale into very high traffic

and global utilization. DasNet will have a total of 33 Core Master Nodes operating in data centers in 33

different jurisdictions throughout the world. Core Master Node installations will occur at a pace of

approximately 2 per month. There will also be approximately 3,000 Core Ledger Nodes running on

DasNet.

Please note that at the moment no one can connect their own Nodes to our peer-to-peer network as it

is a permission-based network.

The role of the Master Node is to aggregate transactions with the intention to produce Blocks. Only

Master Nodes have the authority to write transactions into the Blockchain ledger history. Each Master

Node is aware of the others and they must have been voted in by the governing system. Master Nodes

are novel in that their authority is represented with cryptographic keys. This means that each Master

Node must have registered its Public Key and will sign with its Private Key during the time of Block

Production. Therefore, it is possible to hold any one particular Master Node accountable for its actions.

At the moment there are 5 Master Nodes and by the end of 2018 our plan is to have much more.

6.2 Ledger Nodes
Ledger Nodes are non-authoritative maintainers of the DasCoin Blockchain. In other words, Ledger

Nodes do not produce blocks, yet they aggregate transactions and pass them to the Master Nodes for

Block inclusion. Ledger Nodes can verify transactions and are therefore useful for both increasing the

footprint of the DasCoin Consensus Network and permitting connectivity to reach farther without

requiring the need to assign authority to the nodes. Transaction propagation is accelerated because of

Ledger Nodes.

Currently we have 16 Ledger Nodes that are located in the following locations:

• Belgrade

• London

• Oregon

• Taiwan

• Amsterdam

19 | P a g e

• Frankfurt

• Bangalore

• Sydney

• Brazil

The first five Ledger Nodes are deployed at the Belgrade Datacenter; the London, Oregon and Taiwan

Ledger Nodes are located in Google Cloud Datacenters; and the rest are in DigitalOcean and Amazon

Datacenters.

Ledger Node is the same node structure as Master Node, except it is not permitted to sign blocks. It

does everything else in the same way as Master Node. Block production is the same as in Graphene.

Master Node picking is different - there is no voting for Master Nodes. We are a permissioned

blockchain and in our system Master Nodes are chosen by ‘root authority’. To be able to promote your

Ledger Node into a Master Node, you have to run the node as ledger, and on starting ledger you need to

provide additional parameters as ‘witness-id‘ and ‘private-key’. Then ‘root authority’ has to issue

operations that will make your node behave as a Master Node. Operations related to this functionality

are:

• create_witness_operation

• update_witness_operation

• remove_witness_operation

• activate_witness_operation

• deactivate_witness_operation

6.3 Node Operations
6.3.1 Create Witness Operation
The operation ‘create_witness_operation’ is used to make witness object in the object database. Those

objects are marked with the id ‘1.6.X’ and this id needs to be provided when running Master Node as

argument ‘witness-id‘.

Operation properties are:

• ‘fee’ - amount of fee to be payed (this is currently a free-of-charge operation)

• ‘authority’ - this is root account authority.

• ‘witness_account’ - existing account that we want to promote into a Master Node candidate.

• ‘block_signing_key’ - public key that is used for signing blocks

• ‘url’ - optional field used to specify url address of Witness Node

• ‘comment’ - optional field

6.3.2 Update Witness Operation
The operation ‘update_witness_operation’ is used to change the properties of an already existent

witness object.

20 | P a g e

Operation properties are:

• ‘fee’ - amount of fee to be payed (this is currently a free-of-charge operation)

• ‘witness’ - the id of witness object in database

• ‘authority’ - this is root account authority

• ‘witness_account’ - optional field used to specify an existing account that we want to promote

into a Master Node candidate

• ‘block_signing_key’ - optional field used to specify public key that is used for signing blocks

• ‘url’ - optional field used to specify the url address of Witness Node

• ‘comment’ - optional field

6.3.3 Remove witness operation
The operation ‘remove_witness_operation’ is used to remove existent witness object from the

database.

Operation properties are:

• ‘fee’ - amount of fee to be payed (this is currently a free-of-charge operation)

• ‘witness’ - id of witness object in database that will be deleted

• ‘authority’ - this is root account authority

• ‘comment’ - optional field

6.3.4 Activate witness operation
The operation ‘activate_witness_operation’ is used to add an existent witness object to active witness

objects. Witness scheduler will reserve a slot for this witness in every signing round, and this witness

(node instance) will be able to sign blocks on its slot in time. If the node instance is not running, the slot

will be empty, and we will have missing blocks. Example: if we have 3 witness nodes active and only two

of them running we will have every third slot in time missing a block.

Operation properties are:

• ‘fee’ - amount of fee to be payed (this is currently a free-of-charge operation)

• ‘witness’ - id of witness object in database that will be activated

• ‘authority’ - this is root account authority.

• ‘comment’ - optional field

21 | P a g e

7 WebWallet
WebWallet is a secure access point for users to access relevant data on the DasCoin Blockchain and

interact with the global state by way of signing transactions. It is a cryptographic web-based wallet with

the client front end running in the user’s browser and the application server backend hosted on an

internet web server. The WebWallet serves as the user’s point of entry into the secure DasCoin

Network. Each WebWallet account links the users to their vaults and wallets and is used to store and

validate personal KYC and AML information. Users authenticated through WebWallet can access their

relevant data from the global blockchain state – balances from vaults, license purchases, transaction

history, etc.

WebWallet consists of a Vault and a HotWallet. The Vault is used for storing all assets that come from

the NetLeaders site. Every NetLeaders account has a corresponding Vault. A WebWallet may contain a

single or multiple Vaults, depending on how a user registers their account after they received their

WebWallet invitation email.

Assets that are stored in the Vault are:

• DasCoin – can be received in your Vault after the minting process, or if you purchased them in

the Exchange;

• Reserved WebEuros – your reserve Euro commission earnings from NetLeaders are

automatically transferred to your Vault and are converted to the DasExchange currency of

WebEuros;

• Cash WebEuros – when you transfer Euros from your NetLeaders balance, they go to your Vault

and are converted to the DasExchange currency of WebEuros. You can also accumulate Cash

WebEuros from selling DasCoins on the Internal Exchange;

• Cycles – Cycles acquired from licenses that can be manually submitted to the minting Queue

from your Vault.

22 | P a g e

7.1 Security
Each Vault Account must be licensed for a person or entity to access DasNet. The license level and

corresponding KYC levels also determine the daily amounts a Vault Account is eligible to transfer to a

Wallet Account. A higher license level enables the person or entity to increase their level of

authentication and therefore increases their access to more capacity within the system and higher

withdrawal privileges. This way the DasCoin Blockchain and DasNet can be fully compliant with global

regulations that require account holders to be identified and in good standing before engaging in

commerce with other participants of DasNet. This type of authentication protocol results in a higher

level of integrity among participants and is likely to lead to more acceptance within regulated

jurisdictions throughout the world.

7.2 Validator
WebWallet relies on a cryptographic hardware store for managing keys and securely signing blockchain

transactions. This proprietary hardware device is known as The Validator and has the ability to generate

and store ECDSA private keys corresponding to the users’ blockchain vaults. The Validator is also secured

with a PIN/passphrase that prevents misuse and theft of keys. When signing blockchain transactions,

WebWallet interfaces with The Validator hardware device. The user must first unlock their Validator

before the required private ECDSA key can be transferred into the browser memory of the javascript

client application upon confirmation of a transaction. No DasCoin transaction can be made without

validation through this cryptographic hardware device. This system provides the highest level of safety

and security in the authentication of transactions. The key is stored in the memory for the shortest

possible time required to sign the transaction upon which it is purged from the client memory. The

private key is never ‘hot’ – it never crosses the wire, not even in encrypted form.

You will need your Validator to:

• Withdraw Euros from your WebWallet account

• Send DasCoin to another WebWallet account

• Trade DasCoin via DasExchange

• Access your Reserve funds

• Set up your HotWallet and transfer funds to it

23 | P a g e

7.2.1 Account recovery
The user can back up a mnemonic consisting of 24 words used as entropy for generating the private key.

In case of theft or loss of the hardware device, the user can use the mnemonic to reconstruct the

original private key, thereby restoring access to their account.

7.3 Identity management
7.3.1 KYC
AML stands for Anti-Money Laundering. It is a phrase that applies to the procedures, laws and

regulations designed to stop the practice of generating income through illegal actions. At DasNet, we

verify your identity using bank standard "Know Your Customer" protocols that help safeguard DasCoin's

position as the Currency of Trust.

Depending on your country of residence, the KYC verification process typically takes around 10 minutes.

In certain cases, however, it can take up to 48h. During the process, you may be required to upload

additional documents to verify your identity. If additional documents are required, we will contact you

via email with instructions. We will also provide status updates during the process if needed. You can

upload government-issued documents such as personal ID cards, driver’s licenses and passports. As

proof of address, you can upload government-issued documents on which your residential address is

visible, or a credit card/bank statement less than three month old.

Before you can really enjoy all the benefits the platform provides, KYC verification is a mandatory step.

Without KYC, customer will not receive access to WebWallet.

For successful KYC verification, you need to upload 3 document types:

• Proof of address

• ID proof – Front

• ID Proof – Back

24 | P a g e

7.4 Sample UI
Here is a quick preview of the WebWallet interface, the structure of WebWallet consist of:

• The WebWallet website – a GUI representation of customers’ wallets, as well as easy access to

our DasExchange

• Vault – used for storing all of your assets coming from the NetLeaders website

• HotWallet – where you hold funds to trade and withdraw

• Minting Queue – used to mint DasCoins from Cycles

• Internal Exchange or DasExchange

One of the main parts of the WebWallet platform is our Internal Exchange where customers can sell or

buy their DasCoins.

DasExchange is extremely easy to use and contains all the information that customer might need - from

an overview of value fluctuation that can be set to daily, weekly, or monthly periods (or to a period

extending from the moment our platform went live to the present day) to information like Trade

History, Buy Orders and Sell Orders.

25 | P a g e

8 API
For a full list of API calls and details please see the Appendix or visit our regularly updated API website

here: https://docs.dascoin.com

8.1 Websocket Calls & Notifications

Call Format

In DasCoin, Websocket calls are stateful and accessible via regular websocket connection. The JSON call

has the following structure:

 {
 "id":1,
 "method":"call",
 "params":[0, "get_accounts", [["1.2.0"]]]
 }

The parameters params have the following structure:

 [API-identifier, Method-to-Call, Call-Parameters]
In the example above, we query the database API which carries the identifier 0 in our example.

Example Call With wscat

Note: Examples in this section assume that you have a full node running and listening to port 9880,

locally.

The following will show the usage of websocket connections. We make use of the wscat application

available via npm:

 npm install -g wscat

A non-restricted call against a full-node would take the form:

 wscat -c ws://127.0.0.1:9880
 > {"id":1, "method":"call", "params":[0, "get_accounts", [["1.2.0"]]]}

Successful Calls

The API will return a JSON formatted response carrying the same id as the request to distinguish

subsequent calls.

 {
 "id":1,
 "result": ..data..
 }

https://docs.dascoin.com/

26 | P a g e

Errors

In case of an error, the resulting answer will carry an error attribute and a detailed description:

 {
 "id":0,
 "ssid": ""
 "error": {
 "data": {
 "code": error-code,
 "name": " .. name of exception .."
 "message": " .. message of exception ..",
 "stack": [.. stack trace ..],
 },
 "code": 1,
 },
 }

8.1.1 Requesting API access
The DasCoin full node offers a wide range of APIs that can be accessed via websockets. The procedure

works as follows:

1. Login to the Full Node

2. Request access to an API

3. Obtain the API identifier

4. Call methods of a specific API by providing the identifier

Please find a list of available APIs below:

• Database API

• Account History API

• Network Broadcast API

• Network Nodes API

Login

The first thing we need to do is to log in:

 > {"id":2,"method":"call", "params":[1, "login", ["",""]]}
 < {"id":2,"result":true}

If you have restricted access, then you may be required to put your username and password into

quotes, accordingly. Furthermore, you should verify, that the result gives positive confirmation about

your login.

Requesting Access to an API

Most data can be queried from the Database API to which we register with the following call::

 > {"id":2,"method":"call", "params":[1, "database",[]]}

https://docs.google.com/document/d/1l7Y-2q-WN1wVO1jH8YEBOvkeBbhls01hACtK-kNYQo0/edit#heading=h.zaaxmgfa6esh
https://docs.google.com/document/d/1l7Y-2q-WN1wVO1jH8YEBOvkeBbhls01hACtK-kNYQo0/edit#heading=h.xam9gfwieffd
https://docs.google.com/document/d/1l7Y-2q-WN1wVO1jH8YEBOvkeBbhls01hACtK-kNYQo0/edit#heading=h.s73njv4punil
https://docs.google.com/document/d/1l7Y-2q-WN1wVO1jH8YEBOvkeBbhls01hACtK-kNYQo0/edit#heading=h.tjq7irctm4kx
https://docs.google.com/document/d/1l7Y-2q-WN1wVO1jH8YEBOvkeBbhls01hACtK-kNYQo0/edit#heading=h.zaaxmgfa6esh

27 | P a g e

Obtain the API identifier

After requesting access, the full node will either deny access or return an identifier to be used in future

calls:

 < {"id":2,"result":2}

The result will be our identifier for the database API, in the following called DATABASE_API_ID!

Call methods of a specific API by providing the identifier

Now we can call any methods available to the database API via::

 > {"id":1,"method":"call", "params":[DATABASE_API_ID,"get_accounts",
[["1.2.0"]]]}

8.1.2 Database Notifications
In DasCoin, the websocket connection is used for notifications when objects in the database change or a

particular event (such as filled orders) occurs.

Available subscriptions

set_subscribe_callback

set_subscribe_callback(int identifier, bool clear_filter)
To simplify development, a global subscription callback can be registered. Every notification initiated by

the full node will carry a particular id as defined by the user with the identifier parameter.

set_pending_transaction_callback

set_pending_transaction_callback(int identifier)
Notifications for incoming unconfirmed transactions.

set_block_applied_callback

set_block_applied_callback(block_id)
Gives a notification whenever the block block_id is applied to the blockchain.

subscribe_to_market

subscribe_to_market(int identifier, asset_id a, asset_id b))
Subscribes to market changes in market a:b and sends notifications with id identifier.

get_full_accounts

get_full_accounts(array account_ids, bool subscribe)
Returns the full account object for the accounts in array account_ids and subscribes to changed to that

account if subscribe is set to True.

Subscription Format

28 | P a g e

Let’s first get a global subscription callback to distinguish our notifications from regular RPC calls::

 >
{"id":4,"method":"call","params":[DATABASE_API_ID,"set_subscribe_callback",
[SUBSCRIPTION_ID, true]]}
This call above will register SUBSCRIPTION_ID as the id for notifications. Now, whenever you get an

object from the witness (e.g. via get_objects) you will automatically subscribe to any future changes of

that object. After calling set_subscribe_callback the witness will start to send notices every time the

object changes::

 < {
 "method": "notice"
 "params": [
 SUBSCRIPTION_ID,
 [[
 { "id": "2.1.0", ... },
 { "id": ... },
 { "id": ... },
 { "id": ... }
]]
],
 }

8.1.3 Example Session
Here is an example of a full session::

 > {"id":2,"method":"call","params":[1,"login",["",""]]}
 < {"id":2,"result":true}
 > {"id":3,"method":"call","params":[1,"database",[]]}
 < {"id":3,"result":2}
 > {"id":4,"method":"call","params":[1,"history",[]]}
 < {"id":4,"result":3}
 > {"id":5,"method":"call","params":[2,"set_subscribe_callback",[5,false]]}
 < {"id":5,"result":null}
 > {"id":6,"method":"call","params":[2,"get_objects",[["2.1.0"]]]}
(plenty of data coming in from this point on)

For the complete list of DasCoin API calls see Appendix A.

8.2 Operations
For a full list of Operations and details please see Appendix B.

29 | P a g e

9 Appendix A: Blockchain API
9.1 Database API
The database API is available from the full node via websockets. If you have not set up your websockets

connection, please read this article.

9.1.1.1 OBJECTS

fc::variants graphene::app::database_api::get_objects(const vector<object_id_type> &ids)
const
Get the objects corresponding to the provided IDs. If any of the provided IDs does not map to an
object, a null variant is returned in its position.

Return
The objects retrieved, in the order they are mentioned in ids
Parameters

ids: IDs of the objects to retrieve
If any of the provided IDs does not map to an object, a null variant is returned in its position.

9.1.1.2 SUBSCRIPTIONS

void graphene::app::database_api::set_subscribe_callback(std::function<void(const
variant&)> cb,
bool notify_remove_create)

void graphene::app::database_api::set_pending_transaction_callback(std::function<void(
const variant&)> cb)

void graphene::app::database_api::set_block_applied_callback(std::function<void(
const variant &block_id)> cb)

void graphene::app::database_api::cancel_all_subscriptions()

Stop receiving any notifications.
This unsubscribes from all subscribed markets and objects.

9.1.1.3 BLOCKS AND TRANSACTIONS

optional<block_header> graphene::app::database_api::get_block_header(uint32_t block_num)
const
Retrieve a block header.
Return
Header of the referenced block, or null if no matching block was found
Parameters

block_num: Height of the block whose header should be returned

https://docs.google.com/document/d/1l7Y-2q-WN1wVO1jH8YEBOvkeBbhls01hACtK-kNYQo0/edit#heading=h.6hmizsa7shu0

30 | P a g e

optional<signed_block> graphene::app::database_api::get_block(uint32_t block_num) const
Retrieve a full, signed block.
Return
The referenced block, or null if no matching block was found
Parameters

block_num: Height of the block to be returned

vector< signed_block_with_num > graphene::app::database_api::get_blocks (
uint32_t start_block_num, uint32_t count) const

Return
An array of full, signed blocks starting from a specified height.
Parameters

start_block_num: Height of the block to be returned
count: Number of blocks to return

vector< signed_block_with_virtual_operations_and_num >
 graphene::app::database_api::get_blocks_with_virtual_operations (
uint32_t start_block_num, uint32_t count, std::vector< uint16_t > virtual_operation_ids) const

Return an array of full, signed blocks that contains virtual operations starting from a specified
height.

Return
Array of enumerated blocks
Parameters

start_block_num: Height of the starting block.
count: Number of blocks to return
virtual_operation_ids: Array of virtual operation ids that should be included in result
returned

processed_transaction graphene::app::database_api::get_transaction(uint32_t block_num,
uint32_t trx_in_block) const

Used to fetch an individual transaction.

optional<signed_transaction> graphene::app::database_api::get_recent_transaction_by_id(
const transaction_id_type &id) const

If the transaction has not expired, this method will return the transaction for the given ID or it will return
NULL if it is not known. Just because it is not known does not mean it wasn't included in the blockchain.

9.1.1.4 GLOBALS

chain_property_object graphene::app::database_api::get_chain_properties() const

Retrieve the chain_property_object associated with the chain.

31 | P a g e

global_property_object graphene::app::database_api::get_global_properties() const

Retrieve the current global_property_object.

fc::variant_object graphene::app::database_api::get_config() const

Retrieve compile-time constants.

chain_id_type graphene::app::database_api::get_chain_id() const

Get the chain ID.

dynamic_global_property_object
graphene::app::database_api::get_dynamic_global_properties() const

Retrieve the current dynamic_global_property_object.

9.1.1.5 KEYS

vector<vector<account_id_type>>
graphene::app::database_api::get_key_references(vector<public_key_type> key) const

9.1.1.6 ACCOUNTS

vector<optional<account_object>> graphene::app::database_api::get_accounts(
const vector<account_id_type> &account_ids) const

Get a list of accounts by ID. This function has semantics identical to get_objects.

Return
The accounts corresponding to the provided IDs
Parameters

account_ids: IDs of the accounts to retrieve

std::map<string, full_account> graphene::app::database_api::get_full_accounts(
const vector<string> &names_or_ids, bool subscribe)

Fetch all objects relevant to the specified accounts and subscribe to updates. This function
fetches all relevant objects for the given accounts, and subscribes to updates to the given
accounts. If any of the strings in names_or_ids cannot be tied to an account, that input will be
ignored. All other accounts will be retrieved and subscribed.

Return
Map of string from names_or_ids to the corresponding account

32 | P a g e

Parameters
callback: Function to call with updates
names_or_ids: Each item must be the name or ID of an account to retrieve

optional<account_object> graphene::app::database_api::get_account_by_name(string name)
const

vector<account_id_type> graphene::app::database_api::get_account_references(
account_id_type account_id) const

Return
all accounts that refer to the key or account id in their owner or active authorities.

vector<optional<account_object>> graphene::app::database_api::lookup_account_names(
const vector<string> &account_names) const

Get a list of accounts by name. This function has semantics identical to get_objects.

Return
The accounts holding the provided names
Parameters

account_names: Names of the accounts to retrieve

map<string, account_id_type> graphene::app::database_api::lookup_accounts(
const string &lower_bound_name, uint32_t limit) const

Get names and IDs for registered accounts.

Return
Map of account names to corresponding IDs
Parameters

lower_bound_name: Lower bound of the first name to return
limit: Maximum number of results to return must not exceed 1000

uint64_t graphene::app::database_api::get_account_count() const
Get the total number of accounts registered with the blockchain.

optional< vault_info_res > graphene::app::database_api::get_vault_info(account_id_type
vault_id) const

Get vault information.

Return
vault_info_res (optional)
Parameters
 vault_id

vector< acc_id_vault_info_res > graphene::app::database_api::get_vaults_info(

33 | P a g e

vector<account_id_type> vault_ids) const

Get vault information for a list of vaults.

Return
A JSON object containing a vault id and optional vault information (if vault exists).
Parameters

vault_ids: A list of vault ID's.

9.1.1.7 BALANCES

vector<asset> graphene::app::database_api::get_account_balances(
account_id_type id, const flat_set<asset_id_type> &assets) const

Get an account’s balances in various assets.

Return
Balances of the account
Parameters

id: ID of the account to get balances for
assets: IDs of the assets to get balances of; if empty, get all assets account has a
balance in

vector<asset> graphene::app::database_api::get_named_account_balances(
const std::string &name, constflat_set<asset_id_type> &assets) const

Semantically equivalent to get_account_balances, but takes a name instead of an ID.

vector<balance_object> graphene::app::database_api::get_balance_objects(const
vector<address> &addrs) const

Return
all unclaimed balance objects for a set of addresses

vector<asset> graphene::app::database_api::get_vested_balances(
const vector<balance_id_type> &objs) const

vector<vesting_balance_object> graphene::app::database_api::get_vesting_balances(
account_id_type account_id) const

acc_id_share_t_res graphene::app::database_api::get_free_cycle_balance(account_id_type
account_id) const

(Deprecated) Get a free cycle amount for account

Return

34 | P a g e

Number of issued free cycles on account
Parameters

account_id: account_ids ID of the account to retrieve

vector<acc_id_share_t_res>
graphene::app::database_api::get_free_cycle_balances_for_accounts(
vector<account_id_type> ids) const

(Deprecated) Get remaining amount of cycles.

Return
Vector of objects containing account id and cycle balance
Parameters

ids: Vector of account ids

acc_id_vec_cycle_agreement_res graphene::app::database_api::get_all_cycle_balances(
account_id_type account_id) const

(Deprecated) Get cycle amounts per cycle agreement for account

Return
Vector of cycle amounts and frequency locks on account
Parameters

account_id: ID of the account to retrieve

vector< acc_id_vec_cycle_agreement_res >
graphene::app::database_api::get_all_cycle_balances_for_accounts(
vector< account_id_type > ids) const

(Deprecated) Get cycle balances for list of accounts.

Return
Vector of objects containing account id, cycle amount and frequency lock
Parameters

ids: Vector of account ids

signed_transaction graphene::app::database_api::purchase_cycle_asset(string account, string
amount_to_sell, string symbol_to_sell, double frequency, double amount_of_cycles_to_receive,
bool broadcast = false)

Purchase cycles

Parameters

account: account name or id
amount_to_sell: amount of asset to sell
symbol_to_sell: symbol of asset to sell
frequency: frequency at which we buy

35 | P a g e

amount_of_cycles_to_receive: amount of cycles to receive by this buy

optional<cycle_price> graphene::wallet::wallet_api::calculate_cycle_price(share_type
cycle_amount, asset_id_type asset_id) const

Calculates and returns the amount of asset one needs to pay to get the given amount of cycles

Return
cycle_price structure (optional)
Parameters

cycle_amount: Desired amount of cycles to get
asset_id_type: Asset to pay

acc_id_share_t_res graphene::app::database_api::get_dascoin_balance(
account_id_type id) const

Get amount of DASCoin for on an account.

Return
An object containing id and balance of an account
Parameters

id: ID of the account to retrieve

9.1.1.8 REWARD QUEUE
vector< reward_queue_object > graphene::app::database_api::get_reward_queue() const

Return the entire reward queue.
Return
Vector of all reward queue objects.

vector< reward_queue_object > graphene::app::database_api::get_reward_queue_by_page(
Uint32_t from, uint32_t amount) const

Return a portion of the reward queue.
Parameters
 from: Starting page
 amount: Number of pages to get
Returns
Vector which represent a portion of that queue

unit32_t graphene::app::database_api::get_reward_queue_size() const

Get the size of the DASCoin reward queue.
Return
Number of elements in the DASCoin queue.

36 | P a g e

acc_id_queue_subs_w_pos_res
graphene::app::database_api::get_queue_submissions_with_pos(
account_id_type account_id) const

Get all current submissions to reward queue by single account.
Parameters
 account_id: id of account whose submissions should be returned
Return
All elements on DASCoin reward queue submitted by given account

vector<acc_id_queue_subs_w_pos_res>
graphene::app::database_api::get_queue_submissions_with_pos_for_accounts
(vector<account_id_type> ids) const

Get all current submissions to reward queue by multiple account.
Parameters
 ids: vector of account ids
Return
All elements on DASCoin reward queue submitted by given accounts

9.1.1.9 REQUESTS

vector< issue_asset_request_object >
graphene::app::database_api::get_all_webasset_issue_requests() const

Get all webasset issue request objects, sorted by expiration.
Return
Vector of webasset issue request objects.

vector< wire_out_holder_object > graphene::app::database_api::get_all_wire_out_holders()
const

Get all wire out holder objects.
Return
Vector of wire out holder objects.

vector< wire_out_with_fee_holder_object >
graphene::app::database_api::get_all_wire_out_with_fee_holders() const

Get all wire out with fee holder objects.
Return
Vector of wire out with fee holder objects.

9.1.1.10 ASSETS

vector<optional<asset_object>> graphene::app::database_api::get_assets(

37 | P a g e

const vector<asset_id_type> &asset_ids) const

Get a list of assets by ID.
This function has semantics identical to get_objects.
Return
The assets corresponding to the provided IDs
Parameters

asset_ids: IDs of the assets to retrieve

vector<asset_object> graphene::app::database_api::list_assets(
const string &lower_bound_symbol, uint32_t limit) const
Get assets alphabetically by symbol name.
Return
The assets found
Parameters

lower_bound_symbol: Lower bound of symbol names to retrieve
limit: Maximum number of assets to fetch (must not exceed 100)

vector<optional<asset_object>> graphene::app::database_api::lookup_asset_symbols(
const vector<string> &symbols_or_ids) const
Get a list of assets by symbol. This function has semantics identical to get_objects.
Return
The assets corresponding to the provided symbols or IDs
Parameters

asset_symbols: Symbols or stringified IDs of the assets to retrieve

optional< asset_object > graphene::app::database_api::lookup_asset_symbol (
const string &symbols_or_id) const

Get an asset by symbol.

Return
The asset corresponding to the provided symbol or ID
Parameters

asset_symbols: Symbols or stringified IDs of the assets to retrieve

uint64_t graphene::app::database_api::get_account_count() const

Get the total number of accounts registered with the blockchain.

bool graphene::app::database_api::check_issued_asset(
const string &unique_id, const string &asset) const

Check if an asset issue with the corresponding unique was completed on the chain.

38 | P a g e

bool graphene::app::database_api::check_issued_webeur(const string &unique_id) const

Check if a webeur issue with the corresponding unique was completed on the chain.

9.1.1.11 MARKETS / FEEDS

order_book graphene::app::database_api::get_order_book(
const string &base, const string "e, unsigned limit = 50) const

Returns the order book for the market base:quote.

Return
Order book of the market
Parameters

• base: String name of the first asset
• quote: String name of the second asset
• depth: of the order book. Up to depth of each asks and bids, capped at 50. Prioritizes

most moderate of each

vector<limit_order_object> graphene::app::database_api::get_limit_orders(
asset_id_type a, asset_id_type b, uint32_t limit) const

Get limit orders in a given market.

Return
The limit orders, ordered from least price to greatest
Parameters

• a: ID of asset being sold

• b: ID of asset being purchased

• limit: Maximum number of orders to retrieve

vector<limit_order_object> graphene::app::database_api::get_limit_orders(
asset_id_type a, asset_id_type b, uint32_t limit) const

Get limit orders in a given market.

Return
The limit orders, ordered from least price to greatest
Parameters

• a: ID of asset being sold

• b: ID of asset being purchased

• limit: Maximum number of orders to retrieve

vector<limit_order_object> graphene::app::database_api::get_limit_orders_for_account(
asset_id_type a, asset_id_type b, uint32_t limit) const

Get limit orders in a given market.

Return

39 | P a g e

The limit orders, ordered from least price to greatest
Parameters

id: ID of the account to get limit orders for
• a: ID of asset being sold

• b: ID of asset being purchased

• limit: Maximum number of orders to retrieve

limit_orders_grouped_by_price
graphene::app::database_api::get_limit_orders_grouped_by_price(
asset_id_type a, asset_id_type b, uint32_t limit) const

Get limit orders in a given market grouped by price and divided in buy and sell vectors.

Return
The call orders, ordered from earliest to be called to latest
Parameters

• a: ID of asset being sold
• b: ID of asset being purchased

• limit: Maximum number of orders to retrieve

vector<force_settlement_object> graphene::app::database_api::get_settle_orders(
asset_id_type a, uint32_t limit) const
Get forced settlement orders in a given asset.
Return
The settle orders, ordered from earliest settlement date to latest
Parameters

• a: ID of asset being settled
• limit: Maximum number of orders to retrieve

vector<call_order_object> graphene::app::database_api::get_margin_positions(
const account_id_type &id) const

Return
all open margin positions for a given account id.

void graphene::app::database_api::subscribe_to_market(
std::function<void(const variant&)> callback, asset_id_type a, asset_id_type b,)
Request notification when the active orders in the market between two assets changes.
Callback will be passed a variant containing a vector<pair<operation, operation_result>>. The
vector will contain, in order, the operations which changed the market, and their results.
Parameters

• callback: Callback method which is called when the market changes
• a: First asset ID
• b: Second asset ID

void graphene::app::database_api::unsubscribe_from_market(asset_id_type a, asset_id_type
b)
Unsubscribe from updates to a given market.

40 | P a g e

Parameters
• a: First asset ID

• b: Second asset ID

market_ticker graphene::app::database_api::get_ticker(const string &base, const string
"e) const
Returns the ticker for the market assetA:assetB.
Return
The market ticker for the past 24 hours.
Parameters

• a: String name of the first asset
• b: String name of the second asset

market_hi_lo_volume graphene::app::database_api::get_24_hi_lo_volume(
const string &base, const string "e) const
Returns the 24 hour high, low and volume for the market assetA:assetB.
Return
The market high, low and volume over the past 24 hours
Parameters

• a: String name of the first asset
• b: String name of the second asset

vector<market_trade> graphene::app::database_api::get_trade_history(
const string &base, const string "e, fc::time_point_sec start, fc::time_point_sec stop,
unsigned limit = 100) const
Returns recent trades for the market assetA:assetB Note: Currentlt, timezone offsets are not
supported. The time must be UTC.
Return
Recent transactions in the market
Parameters

• a: String name of the first asset
• b: String name of the second asset
• stop: Stop time as a UNIX timestamp
• limit: Number of transactions to retrieve, capped at 100
• start: Start time as a UNIX timestamp

vector<market_trade> graphene::app::database_api::get_trade_history_by_sequence(
const string &base, const string "e, fc::time_point_sec start, fc::time_point_sec stop,
unsigned limit = 100) const
Returns recent trades for the market assetA:assetB Note: Currentlt, timezone offsets are not
supported. The time must be UTC.
Return
Recent transactions in the market
Parameters

• a: String name of the first asset
• b: String name of the second asset
• stop: Stop time as a UNIX timestamp

41 | P a g e

• start: Start sequence as an Integer, the latest trade to retrieve
• limit: Number of transactions to retrieve, capped at 100

9.1.1.12 WITNESSES

vector<optional<witness_object>> graphene::app::database_api::get_witnesses(
const vector<witness_id_type> &witness_ids) const
Get a list of witnesses by ID. This function has semantics identical to get_objects
Return
The witnesses corresponding to the provided IDs
Parameters

• witness_ids: IDs of the witnesses to retrieve

fc::optional<witness_object> graphene::app::database_api::get_witness_by_account(
account_id_type account) const
Get the witness owned by a given account.
Return
The witness object, or null if the account does not have a witness
Parameters

• account: The ID of the account whose witness should be retrieved

map<string, witness_id_type> graphene::app::database_api::lookup_witness_accounts(
const string &lower_bound_name, uint32_t limit) const
Get names and IDs for registered witnesses.
Return
Map of witness names to corresponding IDs
Parameters

• lower_bound_name: Lower bound of the first name to return

• limit: Maximum number of results to return must not exceed 1000

uint64_t graphene::app::database_api::get_witness_count() const

Get the total number of witnesses registered with the blockchain.

9.1.1.13 COMMITTEE MEMBERS

vector<optional<committee_member_object>>
graphene::app::database_api::get_committee_members(
const vector<committee_member_id_type> &committee_member_ids) const
Get a list of committee_members by ID. This function has semantics identical to get_objects
Return
The committee_members corresponding to the provided IDs
Parameters

committee_member_ids: IDs of the committee_members to retrieve

fc::optional<committee_member_object>
graphene::app::database_api::get_committee_member_by_account(

42 | P a g e

account_id_type account) const
Get the committee_member owned by a given account.
Return
The committee_member object, or null if the account does not have a committee_member
Parameters

account: The ID of the account whose committee_member should be retrieved

map<string, committee_member_id_type>
graphene::app::database_api::lookup_committee_member_accounts(
const string &lower_bound_name, uint32_t limit) const
Get names and IDs for registered committee_members.
Return
Map of committee_member names to corresponding IDs
Parameters

lower_bound_name: Lower bound of the first name to return
limit: Maximum number of results to return must not exceed 1000

9.1.1.14 WORKERS

vector<worker_object> graphene::app::database_api::get_workers_by_account(
account_id_type account) const

Return the worker objects associated with this account.

9.1.1.15 VOTES

vector<variant> graphene::app::database_api::lookup_vote_ids(const vector<vote_id_type>
&votes) const

Given a set of votes, return the objects they are voting for.
This will be a mixture of committee_member_object, witness_objects, and worker_objects.
The results will be in the same order as the votes. Null will be returned for any vote ids that are
not found.

9.1.1.16 AUTHORITY / VALIDATION

std::string graphene::app::database_api::get_transaction_hex(const signed_transaction &trx)
const
Get a hexdump of the serialized binary form of a transaction.

set<public_key_type> graphene::app::database_api::get_required_signatures(const
signed_transaction &trx, constflat_set<public_key_type> &available_keys) const
This API will take a partially signed transaction and a set of public keys that the owner has the
ability to sign for and return the minimal subset of public keys that should add signatures to the
transaction.

set<public_key_type> graphene::app::database_api::get_potential_signatures(const
signed_transaction &trx) const

43 | P a g e

This method will return the set of all public keys that could possibly sign for a given transaction.
This call can be used by wallets to filter their set of public keys to just the relevant subset prior to
calling get_required_signatures to get the minimum subset.

set<address> graphene::app::database_api::get_potential_address_signatures(const
signed_transaction &trx) const

bool graphene::app::database_api::verify_authority(const signed_transaction &trx) const
Return
true of the trx has all of the required signatures, otherwise throws an exception

bool graphene::app::database_api::verify_account_authority(
const string &name_or_id, const flat_set<public_key_type> &signers) const

Return
true if the signers have enough authority to authorize an account

processed_transaction graphene::app::database_api::validate_transaction(const
signed_transaction &trx) const

Validates a transaction against the current state without broadcasting it on the network.

vector<fc::variant> graphene::app::database_api::get_required_fees(const vector<operation>
&ops, asset_id_type id)const

For each operation calculate the required fee in the specified asset type. If the asset type does
not have a valid core_exchange_rate.

9.1.1.17 PROPOSED TRANSACTIONS
vector<proposal_object> graphene::app::database_api::get_proposed_transactions(
account_id_type id) const

Return
the set of proposed transactions relevant to the specified account id.

9.1.1.18 BLINDED BALANCES

vector<blinded_balance_object> graphene::app::database_api::get_blinded_balances(
const flat_set<commitment_type> &commitments) const

Return
the set of blinded balance objects by commitment ID

9.1.1.19 LICENSES

optional<license_type_object> graphene::app::database_api::get_license_type(

44 | P a g e

license_type_id_type) const

Get license type-ids found on the blockchain.

Returns
The license type-id if found.
Parameters

license_type_id_type-id: used on the block

vector<license_type_object> graphene::app::database_api::get_license_types() const

Get all license type-ids found on the blockchain.

Returns
Vector of license type-ids found

vector<pair<string, license_type_id_type>>
graphene::app::database_api::get_license_type_names_ids() const

Get all name/license type-ids found on the blockchain.

Returns
Vector of license name/type-ids pairs found

vector<license_types_grouped_by_kind_res>
graphene::app::database_api::get_license_type_names_ids_grouped_by_kind() const

Get all license type-ids grouped by kind found on the blockchain.

Returns
Vector of license type-ids found grouped by kind

vector<license_objects_grouped_by_kind_res>
graphene::app::database_api::get_license_objects_grouped_by_kind() const

Get all license objects grouped by kind found on the blockchain.

Returns
Vector of license objects found grouped by kind

vector<license_type_object>
graphene::app::database_api::list_license_types_by_name(
const string& lower_bound_name, uint32_t limit) const

Get license types active on the blockchain by name.

Returns
The license types found

45 | P a g e

Parameters
lower_bound_symbol: Lower bound of license type names to retrieve
limit: Maximum number of license types to fetch (must not exceed 100)

vector<license_type_object> graphene::app::database_api::list_license_types_by_amount(
const uint32_t lower_bound_amount, uint32_t limit) const

Get license types active on the blockchain by amount.

Returns
The license types found.
Parameters

lower_bound_symbol: Lower bound of license type names to retrieve.
limit: Maximum number of license types to fetch (must not exceed 100).

vector<optional< license_type_object>>
graphene::app::database_api::lookup_license_type_names(
const vector<string> &names_or_ids) const

Get a list of license types by names. This function has semantics identical to get_objects

Returns
The assets corresponding to the provided symbols or IDs
Parameters

asset_symbols: Symbols or stringified IDs of the assets to retrieve

vector<optional<license_information_object>>
graphene::app::database_api::get_license_information(
const vector<account_id_type> &account_ids) const

Get a list of account issued license types. This function has semantics identical to get_objects.

Returns
Vector of issued license information objects
Parameters

account_ids: IDs of the accounts to retrieve

vector<upgrade_event_object> graphene::app::database_api::get_upgrade_events() const

Get a list of upgrade events.

Returns
A list of upgrade events, scheduled or executed

46 | P a g e

9.2 Account History API
The history_api class implements the RPC API for account history.

9.2.1.1 Account History

vector<operation_history_object> graphene::app::history_api::get_account_history
(account_id_type account, operation_history_id_type stop = operation_history_id_type (),
unsigned limit = 100, operation_history_id_type start = operation_history_id_type ()) const

Get operations relevant to the specified account.
Return
A list of operations performed by account, ordered from most recent to oldest.
Parameters

• account: The account whose history should be queried
• stop: ID of the earliest operation to retrieve
• limit: Maximum number of operations to retrieve (must not exceed 100)
• start: ID of the most recent operation to retrieve

vector<operation_history_object>
graphene::app::history_api::get_account_history_by_operation (account_id_type account,
flat_set< uint32_t > operation_types, operation_history_id_type stop =
operation_history_id_type (), unsigned limit = 100, operation_history_id_type start =
operation_history_id_type ()) const

Get operations relevant to the specified account filtering by operation type.
Return
A list of operations performed by account, ordered from most recent to oldest.
Parameters

• account: The account whose history should be queried
• operation_types: The IDs of the operation we want to get operations in the account(0 =

transfer , 1 = limit order create, ...)
• stop: ID of the earliest operation to retrieve
• limit: Maximum number of operations to retrieve (must not exceed 100)
• start: ID of the most recent operation to retrieve

vector< operation_history_object > graphene::app::history_api::get_relative_account_history
(account_id_type account, uint32_t stop = 0, unsigned limit = 100,uint32_t start = 0) const

Get operations relevant to the specified account referenced by an event numbering specific to
the account. The current number of operations for the account can be found in the account
statistics (or use 0 for start).
Return
A list of operations performed by account, ordered from most recent to oldest.
Parameters

• account: The account whose history should be queried
• stop: Sequence number of earliest operation. 0 is default and will query 'limit' number of

operations.
• limit: Maximum number of operations to retrieve (must not exceed 100)
• start: Sequence number of the most recent operation to retrieve. 0 is default, which will

start querying from the most recent operation.

47 | P a g e

9.2.1.2 Market History

vector<order_history_object> graphene::app::history_api::get_fill_order_history(asset_id_type
a, asset_id_type b, uint32_t limit) const

vector<bucket_object> graphene::app::history_api::get_market_history(asset_id_type a,
asset_id_type b, uint32_t bucket_seconds, fc::time_point_sec start, fc::time_point_sec end)
const

flat_set<uint32_t> graphene::app::history_api::get_market_history_buckets() const

9.3 Crypto API
9.3.1.1 Blinding and Un-Blinding

blind_signature graphene::app::crypto_api::blind_sign(const extended_private_key_type &key,
const fc::ecc::blinded_hash &hash, int i)

signature_type graphene::app::crypto_api::unblind_signature(const
extended_private_key_type &key, const extended_public_key_type &bob, const
fc::ecc::blind_signature &sig, const fc::sha256 &hash, int i)

commitment_type graphene::app::crypto_api::blind(const fc::ecc::blind_factor_type &blind,
uint64_t value)

blind_factor_type graphene::app::crypto_api::blind_sum(const std::vector<blind_factor_type>
&blinds_in, uint32_t non_neg)

9.3.1.2 Rage Proofs

range_proof_info graphene::app::crypto_api::range_get_info(const std::vector<char> &proof)

std::vector<char> graphene::app::crypto_api::range_proof_sign(uint64_t min_value, const
commitment_type &commit, const blind_factor_type &commit_blind, const blind_factor_type
&nonce, int8_t base10_exp, uint8_t min_bits, uint64_t actual_value)

9.3.1.3 Verification

bool graphene::app::crypto_api::verify_sum(const std::vector<commitment_type>
&commits_in, const std::vector<commitment_type> &neg_commits_in, int64_t excess)

verify_range_result graphene::app::crypto_api::verify_range(const fc::ecc::commitment_type
&commit, const std::vector<char> &proof)

verify_range_proof_rewind_result
graphene::app::crypto_api::verify_range_proof_rewind(const blind_factor_type &nonce, const
fc::ecc::commitment_type &commit, const std::vector<char> &proof)

48 | P a g e

9.4 Network Broadcast API
The network_broadcast_api class allows broadcasting of transactions.

9.4.1.1 Transactions

void graphene::app::network_broadcast_api::broadcast_transaction(const signed_transaction
&trx)
Broadcast a transaction to the network.
The transaction will be checked for validity in the local database prior to broadcasting. If it fails
to apply locally, an error will be thrown and the transaction will not be broadcast.
Parameters

• trx: The transaction to broadcast

void graphene::app::network_broadcast_api::broadcast_transaction_with_callback
(confirmation_callback cb, const signed_transaction &trx)
This version of broadcast transaction registers a callback method that will be called when the
transaction is included into a block. The callback method includes the transaction id, block
number, and transaction number in the block.

9.4.1.2 Block

void graphene::app::network_broadcast_api::broadcast_block(const signed_block &block)

9.5 Network Nodes API
The network_node_api class allows maintenance of p2p connections.

9.5.1.1 Obtain Network Information

fc::variant_object graphene::app::network_node_api::get_info() const
Return general network information, such as p2p port.

std::vector<net::peer_status> graphene::app::network_node_api::get_connected_peers()
const
Get status of all current connections to peers.

std::vector<net::potential_peer_record>
graphene::app::network_node_api::get_potential_peers() const
Return list of potential peers.

fc::variant_object graphene::app::network_node_api::get_advanced_node_parameters() const
Get advanced node parameters, such as desired and max number of connections.

9.5.1.2 Change Network Settings

void graphene::app::network_node_api::add_node(const fc::ip::endpoint &ep)
add_node Connect to a new peer
Parameters

• ep: The IP/Port of the peer to connect to

49 | P a g e

void graphene::app::network_node_api::set_advanced_node_parameters(const
fc::variant_object ¶ms)
Set advanced node parameters, such as desired and max number of connections.
Parameters

• params: a JSON object containing the name/value pairs for the parameters to set

9.6 Wallet API
9.6.1.1 General Calls

help

string graphene::wallet::wallet_api::help() const
Returns a list of all commands supported by the wallet API. This lists each command, along with
its arguments and return types. For more detailed help on a single command, use get_help()
Return
a multiline string suitable for displaying on a terminal

gethelp

string graphene::wallet::wallet_api::gethelp(const string &method) const
Returns detailed help on a single API command.
Return
a multi-line string suitable for displaying on a terminal
Parameters

• method: the name of the API command you want help with variant

info

graphene::wallet::wallet_api::info()
Returns JSON string with informations about current blockchain state
Return
JSON string

about

variant_object graphene::wallet::wallet_api::about() const
Returns info such as client version, git version of graphene/fc, version of boost, openssl.
Return
compile time info and client and dependencies versions

network_add_nodes

void graphene::wallet::wallet_api::network_add_nodes(const vector<string>
&nodes)
Connect to a new peer
Parameters

50 | P a g e

• nodes: list of the IP addresses and ports of new nodes

network_get_connected_peers

vector<variant> graphene::wallet::wallet_api::network_get_connected_peers()
Get status of all current connections to peers

9.6.1.2 Wallet Calls

is_new

bool graphene::wallet::wallet_api::is_new() const
Checks whether the wallet has just been created and has not yet had a password set. Calling
set_password() will transition the wallet to the locked state.
Return
true if the wallet is new

is_locked

bool graphene::wallet::wallet_api::is_locked() const
Checks whether the wallet is locked (is unable to use its private keys). This state can be
changed by calling lock() or unlock().
Return
true if the wallet is locked

lock

void graphene::wallet::wallet_api::lock()
Locks the wallet immediately.

unlock

void graphene::wallet::wallet_api::unlock(string password)
Unlocks the wallet. The wallet remain unlocked until the lock is called or the program exits.
Parameters

• password: the password previously set with set_password()

set_password

void graphene::wallet::wallet_api::set_password(string password)
Sets a new password on the wallet. The wallet must be either ‘new’ or ‘unlocked’ to execute this
command.
Parameters

• password: new password

dump_private_keys

51 | P a g e

map<public_key_type, string>
graphene::wallet::wallet_api::dump_private_keys()
Dumps all private keys owned by the wallet. The keys are printed in WIF format. You can import
these keys into another wallet using import_key()
Return
a map containing the private keys, indexed by their public key

import_key

bool graphene::wallet::wallet_api::import_key(string account_name_or_id,
string wif_key)
Imports the private key for an existing account. The private key must match either an owner key
or an active key for the named account.
See
dump_private_keys()
Return
true if the key was imported
Parameters

• account_name_or_id: the account owning the key
• wif_key: the private key in WIF format

import_accounts

map<string, bool> graphene::wallet::wallet_api::import_accounts(string
filename, string password)

import_account_keys

bool graphene::wallet::wallet_api::import_account_keys(string filename,
string password, string src_account_name, string dest_account_name)

import_balance

vector<signed_transaction>
graphene::wallet::wallet_api::import_balance(string account_name_or_id, const
vector<string> &wif_keys, bool broadcast)
This call will construct transaction(s) that will claim all balances controlled by wif_keys and
deposit them into the given account.

suggest_brain_key

brain_key_info graphene::wallet::wallet_api::suggest_brain_key() const
Suggests a safe brain key to use for creating your account. create_account_with_brain_key()
requires you to specify a ‘brain key’, a long passphrase that provides enough entropy to
generate cryptographic keys. This function will suggest a suitably random string that should be
easy to write down (and, with effort, memorize).
See

52 | P a g e

create_account_with_brain_key()
Return
a suggested brain_key

get_transaction_id

transaction_id_type graphene::wallet::wallet_api::get_transaction_id(const
signed_transaction &trx) const
This method is used to convert a JSON transaction to its transaction ID.

get_private_key

string graphene::wallet::wallet_api::get_private_key(public_key_type pubkey)
const
Get the WIF private key corresponding to a public key. The private key must already be in the
wallet.

load_wallet_file

bool graphene::wallet::wallet_api::load_wallet_file(string wallet_filename =
"")
Loads a specified Graphene wallet. The current wallet is closed before the new wallet is loaded.
Warning: This does not change the filename that will be used for future wallet writes, so this
may cause you to overwrite your original wallet unless you also call set_wallet_filename()
Return
true if the specified wallet is loaded
Parameters

• wallet_filename: the filename of the wallet JSON file to load. If wallet_filename is empty,
it reloads the existing wallet file

get_wallet_filename

string graphene::wallet::wallet_api::get_wallet_filename()
Returns the current wallet filename. This is the filename that will be used when automatically
saving the wallet.
See
set_wallet_filename()
Return
the wallet filename

set_wallet_filename

void graphene::wallet::wallet_api::set_wallet_filename(string
wallet_filename)
Sets the wallet filename used for future writes. This does not trigger a save, it only changes the
default filename that will be used the next time a save is triggered.
Parameters

53 | P a g e

• wallet_filename: the new filename to use for future saves

normalize_brain_key

string graphene::wallet::wallet_api::normalize_brain_key(string s) const
Transforms a brain key to reduce the chance of errors when re-entering the key from memory.
This takes a user-supplied brain key and normalizes it into the form used for generating private
keys. In particular, this upper-cases all ASCII characters and collapses multiple spaces into one.
Return
the brain key in its normalized form
Parameters

• s: the brain key as supplied by the user

save_wallet_file

void graphene::wallet::wallet_api::save_wallet_file(string wallet_filename =
"")
Saves the current wallet to the given filename.
Warning: This does not change the wallet filename that will be used for future writes, so think of
this function as ‘Save a Copy As…’ instead of ‘Save As…’. Use set_wallet_filename() to make
the filename persist.
Parameters

• wallet_filename: the filename of the new wallet JSON file to create or overwrite. If
wallet_filename is empty, save to the current filename.

9.6.1.3 Account Calls

list_my_accounts

vector<account_object> graphene::wallet::wallet_api::list_my_accounts()
Lists all accounts controlled by this wallet. This returns a list of the full account objects for all
accounts whose private keys we possess.
Return
a list of account objects

list_accounts

map<string, account_id_type>
graphene::wallet::wallet_api::list_accounts(const string &lowerbound,
uint32_t limit)
Lists all accounts registered in the blockchain. This returns a list of all account names and their
account ids, sorted by account name. Use the lowerbound and limit parameters to page through
the list. To retrieve all accounts, start by setting lowerbound to the empty string "", and then
each iteration, pass the last account name returned as the lowerbound for the next
list_accounts() call.
Return
a list of accounts mapping account names to account ids
Parameters

54 | P a g e

• lowerbound: the name of the first account to return. If the named account does not exist,
the list will start at the account that comes after lowerbound

• limit: the maximum number of accounts to return (max: 1000)

list_account_balances

vector<asset> graphene::wallet::wallet_api::list_account_balances(const
string &id)
List the balances of an account. Each account can have multiple balances, one for each type of
asset owned by that account. The returned list will only contain assets for which the account has
a nonzero balance
Return
a list of the given account balances
Parameters

• id: the name or id of the account whose balances you want

register_account

signed_transaction graphene::wallet::wallet_api::register_account(string
name, public_key_type owner, public_key_type active, string
registrar_account, string referrer_account, uint32_t referrer_percent, bool
broadcast = false)
Registers a third party’s account on the blockchain. This function is used to register an account
for which you do not own the private keys. When acting as a registrar, an end user will generate
their own private keys and send you the public keys. The registrar will use this function to
register the account on behalf of the end user.
See
create_account_with_brain_key()
Return
the signed transaction registering the account
Parameters

• name: the name of the account, must be unique on the blockchain. Shorter names are
more expensive to register; the rules are still in flux, but in general names of more than 8
characters with at least one digit will be cheap.

• owner: the owner key for the new account
• active: the active key for the new account
• registrar_account: the account which will pay the fee to register the user
• referrer_account: the account who is acting as a referrer, and may receive a portion of

the user’s transaction fees. This can be the same as the registrar_account if there is no
referrer.

• referrer_percent: the percentage (0 - 100) of the new user’s transaction fees not claimed
by the blockchain that will be distributed to the referrer; the rest will be sent to the
registrar. Will be multiplied by GRAPHENE_1_PERCENT when constructing the
transaction.

• broadcast: true to broadcast the transaction on the network

register_vault_account

55 | P a g e

signed_transaction
graphene::wallet::wallet_api::register_vault_account(string name,
public_key_type owner, public_key_type active, bool broadcast = false)
Registers a third party's vault account on the blockchain. This function is used to register a vault
account for which you do not own the private keys. When acting as a registrar, an end user will
generate their own private keys and send you the public keys. The registrar will use this function
to register the account on behalf of the end user.
See
register_account()
Return
the signed transaction registering vault account
Parameters

• name: the name of the account, must be unique on the blockchain. Shorter names are
more expensive to register; the rules are still in flux, but in general names of more than 8
characters with at least one digit will be cheap.

• owner: the owner key for the new account
• active: the active key for the new account
• broadcast: true to broadcast the transaction on the network

tether_accounts

signed_transaction graphene::wallet::wallet_api::tether_accounts(string
wallet, string vault, bool broadcast = false)
Tethers a wallet account to a vault account on the blockchain. This function is used to tether two
accounts (a wallet and a vault)
Return
the signed transaction tethering two accounts
Parameters

• wallet: the name or id of the wallet account to tether
• vault: the name or id of the vault account to tether
• broadcast: true to broadcast the transaction on the network

upgrade_account

signed_transaction graphene::wallet::wallet_api::upgrade_account(string name,
bool broadcast)
Upgrades an account to prime status. This makes the account holder a ‘lifetime member’.
Return
the signed transaction upgrading the account
Parameters

• name: the name or id of the account to upgrade
• broadcast: true to broadcast the transaction on the network

create_account_with_brain_key

signed_transaction
graphene::wallet::wallet_api::create_account_with_brain_key(string brain_key,

56 | P a g e

string account_name, string registrar_account, string referrer_account, bool
broadcast = false)
Creates a new account and registers it on the blockchain.
See
suggest_brain_key()
register_account()
Return
the signed transaction registering the account
Parameters

• brain_key: the brain key used for generating the account’s private keys
• account_name: the name of the account, must be unique on the blockchain. Shorter

names are more expensive to register; the rules are still in flux, but in general names of
more than 8 characters with at least one digit will be cheap.

• registrar_account: the account which will pay the fee to register the user
• referrer_account: the account who is acting as a referrer, and may receive a portion of

the user’s transaction fees. This can be the same as the registrar_account if there is no
referrer.

• broadcast: true to broadcast the transaction on the network

create_account

signed_transaction graphene::wallet::wallet_api::create_account(account_kind
kind, string name, public_key_type owner, public_key_type active, bool
broadcast = false)
Registers a third party's account on the blockchain. This function is used to register an account
for which you do not own the private keys. When acting as a registrar, an end user will generate
their own private keys and send you the public keys. The registrar will use this function to
register the account on behalf of the end user.
See
create_account_with_brain_key()
Return
the signed transaction registering the account
Parameters

• kind: the kind of the account, i.e. vault
• name: the name of the account, must be unique on the blockchain. Shorter names are

more expensive to register; the rules are still in flux, but in general names of more than 8
characters with at least one digit will be cheap.

• owner: the owner key for the new account
• active: the active key for the new account
• broadcast: true to broadcast the transaction on the network

transfer

signed_transaction graphene::wallet::wallet_api::transfer(string from, string
to, string amount, string asset_symbol, string memo, bool broadcast = false)
Transfer an amount from one account to another.
Return
the signed transaction transferring funds
Parameters

57 | P a g e

• from: the name or id of the account sending the funds
• to: the name or id of the account receiving the funds
• amount: the amount to send (in nominal units to send half of a BTS, specify 0.5)
• asset_symbol: the symbol or id of the asset to send
• memo: a memo to attach to the transaction. The memo will be encrypted in the

transaction and readable for the receiver. There is no length limit other than the limit
imposed by maximum transaction size, but transaction increase with transaction size

• broadcast: true to broadcast the transaction on the network

transfer2

pair<transaction_id_type, signed_transaction>
graphene::wallet::wallet_api::transfer2(string from, string to, string
amount, string asset_symbol, string memo)
This method works just like transfer, except it always broadcasts and returns the transaction ID
along with the signed transaction.

whitelist_account

signed_transaction graphene::wallet::wallet_api::whitelist_account(string
authorizing_account, string account_to_list,
account_whitelist_operation::account_listing new_listing_status, bool
broadcast = false)
Whitelist and blacklist accounts, primarily for transacting in whitelisted assets. Accounts can
freely specify opinions about other accounts, in the form of either whitelisting or blacklisting
them. This information is used in chain validation only to determine whether an account is
authorized to transact in an asset type which enforces a whitelist, but third parties can use this
information for other uses as well, as long as it does not conflict with the use of whitelisted
assets. An asset which enforces a whitelist specifies a list of accounts to maintain its whitelist,
and a list of accounts to maintain its blacklist. In order for a given account A to hold and transact
in a whitelisted asset S, A must be whitelisted by at least one of S’s whitelist_authorities and
blacklisted by none of S’s blacklist_authorities. If A receives a balance of S, and is later
removed from the whitelist(s) which allowed it to hold S, or added to any blacklist S specifies as
authoritative, A’s balance of S will be frozen until A’s authorization is reinstated.
Return
the signed transaction changing the whitelisting status
Parameters

• authorizing_account: the account who is doing the whitelisting
• account_to_list: the account being whitelisted
• new_listing_status: the new whitelisting status
• broadcast: true to broadcast the transaction on the network

get_vesting_balances

vector<vesting_balance_object_with_info>
graphene::wallet::wallet_api::get_vesting_balances(string account_name)
Get information about a vesting balance object.
Parameters

58 | P a g e

• account_name: An account name, account ID, or vesting balance object ID.

withdraw_vesting

signed_transaction graphene::wallet::wallet_api::withdraw_vesting(string
witness_name, string amount, string asset_symbol, bool broadcast = false)
Withdraw a vesting balance.
Parameters

• witness_name: The account name of the witness, also accepts account ID or vesting
balance ID type.

• amount: The amount to withdraw.
• asset_symbol: The symbol of the asset to withdraw.
• broadcast: true if you wish to broadcast the transaction

get_account

account_object graphene::wallet::wallet_api::get_account(string
account_name_or_id) const
Returns information about the given account.
Return
the public account data stored in the blockchain
Parameters

• account_name_or_id: the name or id of the account to provide information about

get_account_id

account_id_type graphene::wallet::wallet_api::get_account_id(string
account_name_or_id) const
Lookup the id of a named account.
Return
the id of the named account
Parameters

• account_name_or_id: the name of the account to look up

get_account_history

vector<operation_detail>
graphene::wallet::wallet_api::get_account_history(string name, int limit)
const
Returns the most recent operations on the named account. This returns a list of operation
history objects, which describe activity on the account.
Return
a list of operation_history_objects
Parameters

• name: the name or id of the account
• limit: the number of entries to return (starting from the most recent)

59 | P a g e

approve_proposal

signed_transaction graphene::wallet::wallet_api::approve_proposal(const
string &fee_paying_account, const string &proposal_id, const approval_delta
&delta, bool broadcast)
Approve or disapprove a proposal.
Return
the signed version of the transaction
Parameters

• fee_paying_account: The account paying the fee for the op.
• proposal_id: The proposal to modify.
• delta: Members contain approvals to create or remove. In JSON you can leave empty

members undefined.
• broadcast: true if you wish to broadcast the transaction

get_account_cycle_balance

acc_id_share_t_res
graphene::wallet::wallet_api::get_account_cycle_balance(const string&
account) const
Get the amount of cycles in the account.
Return
Cycle balance of the account.
Parameters

• account: Account name or stringified id.

get_full_cycle_balances

acc_id_vec_cycle_agreement_res
graphene::wallet::wallet_api::get_full_cycle_balances(const string& account)
const
Deprecated

purchase_cycle_asset

signed_transaction graphene::wallet::wallet_api::purchase_cycle_asset(string
account, string amount_to_sell, string symbol_to_sell, double frequency,
double amount_of_cycles_to_receive, bool broadcast = false)
Purchase cycles.
Parameters

• account: account name or id
• amount_to_sell: amount of asset to sell
• symbol_to_sell: symbol of asset to sell
• frequency: frequency at which we buy
• amount_of_cycles_to_receive: amount of cycles to receive by this buy

calculate_cycle_price

60 | P a g e

optional<cycle_price>
graphene::wallet::wallet_api::calculate_cycle_price(share_type cycle_amount,
asset_id_type asset_id) const
Calculates and returns the amount of asset one needs to pay to get the given amount of cycles
Return
cycle_price structure (optional)
Parameters

• cycle_amount: Desired amount of cycles to get
• asset_id_type: Asset to pay

get_dascoin_balance

acc_id_share_t_res graphene::wallet::wallet_api::get_dascoin_balance(const
string& account) const
Get amount of DasCoin for on an account.
Return
An object containing dascoin balance of an account
Parameters

• account: Account name or stringified id.

9.6.1.4 Wire out Calls

wire_out

signed_transaction graphene::wallet::wallet_api::wire_out(const string&
account, share_type amount, bool broadcast) const
Wire out some WebAsset
Return
the signed transaction wiring out webasset
Parameters

• account: Account name or stringified id
• amount: the amount to wire out
• broadcast: true to broadcast the transaction on the network

wire_out_with_fee

signed_transaction graphene::wallet::wallet_api::wire_out_with_fee(const
string& account, share_type amount, const string& currency_of_choice, const
string& to_address, const string& memo, bool broadcast) const

Wire out with fee some WebAsset
Return
the signed transaction wiring out webasset
Parameters

• account: Account name or stringified id
• amount: the amount to wire out

61 | P a g e

• currency_of_choice: Currency of choice (string abbreviation) in which user wants wire
out

• to_address: Destination blockchain address to which the amount needs to be wired
• memo: Optional note
• broadcast: true to broadcast the transaction on the network

9.6.1.5 Trading Calls

sell_asset

signed_transaction graphene::wallet::wallet_api::sell_asset(string
seller_account, string amount_to_sell, string symbol_to_sell, string
min_to_receive, string symbol_to_receive, uint32_t timeout_sec = 0, bool
fill_or_kill = false, bool broadcast = false)
Place a limit order attempting to sell one asset for another. Buying and selling are the same
operation on Graphene; if you want to buy DASC with USD, you should sell USD for DASC. The
blockchain will attempt to sell the symbol_to_sell for as much symbol_to_receive as possible, as
long as the price is at least min_to_receive / amount_to_sell. In addition to the transaction fees,
market fees will apply as specified by the issuer of both the selling asset and the receiving asset
as a percentage of the amount exchanged. If either the selling asset or the receiving asset is
whitelist restricted, the order will only be created if the seller is on the whitelist of the restricted
asset type. Market orders are matched in the order they are included in the blockchain.
Return
the signed transaction selling the funds
Parameters

• seller_account: the account providing the asset being sold, and which will receive the
proceeds of the sale.

• amount_to_sell: the amount of the asset being sold to sell (in nominal units)
• symbol_to_sell: the name or id of the asset to sell
• min_to_receive: the minimum amount you are willing to receive in return for selling the

entire amount_to_sell
• symbol_to_receive: the name or id of the asset you wish to receive
• timeout_sec: if the order does not fill immediately, this is the length of time the order will

remain on the order books before it is cancelled and the un-spent funds are returned to
the seller’s account

• fill_or_kill: if true, the order will only be included in the blockchain if it is filled
immediately; if false, an open order will be left on the books to fill any amount that
cannot be filled immediately.

• broadcast: true to broadcast the transaction on the network

sell

signed_transaction graphene::wallet::wallet_api::sell(string seller_account,
string base, string quote, string rate, double amount, bool broadcast =
false)
Place a limit order attempting to sell one asset for another.
This API call abstracts away some of the details of the sell_asset() call to be more user friendly.
All orders placed with sell never timeout and will not be killed if they cannot be filled

62 | P a g e

immediately. If you wish for one of these parameters to be different, then sell_asset() should be
used instead.
Return
the signed transaction selling the funds
Parameters

• seller_account: the account providing the asset being sold, and which will receive the
proceeds of the sale.

• base: the name or id of the asset to sell.
• quote: the name or id of the asset to receive.
• rate: The rate in base:quote at which you want to sell.
• amount: the amount of base you want to sell.
• broadcast: true to broadcast the transaction on the network

buy

signed_transaction graphene::wallet::wallet_api::buy(string buyer_account,
string base, string quote, double rate, double amount, bool broadcast =
false)
Place a limit order attempting to buy one asset with another.
This API call abstracts away some of the details of the sell_asset() call to be more user friendly.
All orders placed with buy never timeout and will not be killed if they cannot be filled
immediately. If you wish for one of these parameters to be different, then sell_asset() should be
used instead
Return
the signed transaction buying the funds
Parameters

• buyer_account: the account buying the asset for another asset
• base: the name or id of the asset to buy.
• quote: the name or id of the asset being offered as payment.
• rate: the rate in base:quote at which you want to buy.
• amount: the amount of base you want to buy.
• broadcast: true to broadcast the transaction on the network

borrow_asset

signed_transaction graphene::wallet::wallet_api::borrow_asset(string
borrower_name, string amount_to_borrow, string asset_symbol, string
amount_of_collateral, bool broadcast = false)
Borrow an asset or update the debt/collateral ratio for the loan. This is the first step in shorting
an asset. Call sell_asset() to complete the short.
Return
the signed transaction borrowing the asset
Parameters

• borrower_name: the name or id of the account associated with the transaction.
• amount_to_borrow: the amount of the asset being borrowed. Make this value negative to

pay back debt.
• asset_symbol: the symbol or id of the asset being borrowed.

63 | P a g e

• amount_of_collateral: the amount of the backing asset to add to your collateral position.
Make this negative to claim back some of your collateral. The backing asset is defined in
the bitasset_options for the asset being borrowed.

• broadcast: true to broadcast the transaction on the network

cancel_order

signed_transaction graphene::wallet::wallet_api::cancel_order(object_id_type
order_id, bool broadcast = false)
Cancel an existing order
Return
the signed transaction canceling the order
Parameters

• order_id: the id of order to be cancelled
• broadcast: true to broadcast the transaction on the network

settle_asset

signed_transaction graphene::wallet::wallet_api::settle_asset(string
account_to_settle, string amount_to_settle, string symbol, bool broadcast =
false)
Schedules a market-issued asset for automatic settlement. Holders of market-issued assets
may request a forced settlement for some amount of their asset. This means that the specified
sum will be locked by the chain and held for the settlement period, after which time the chain will
choose a margin position holder and buy the settled asset using the margin collateral. The price
of this sale will be based on the feed price for the market-issued asset being settled. The exact
settlement price will be the feed price at the time of settlement with an offset in favor of the
margin position, where the offset is a blockchain parameter set in the global_property_object.
Return
the signed transaction settling the named asset
Parameters

• account_to_settle: the name or id of the account owning the asset
• amount_to_settle: the amount of the named asset to schedule for settlement
• symbol: the name or id of the asset to settlement on
• broadcast: true to broadcast the transaction on the network

get_market_history

vector<bucket_object> graphene::wallet::wallet_api::get_market_history(string
symbol, string symbol2, uint32_t bucket, fc::time_point_sec start,
fc::time_point_sec end) const

get_limit_orders

vector<limit_order_object>
graphene::wallet::wallet_api::get_limit_orders(string a, string b, uint32_t
limit) const

64 | P a g e

get_call_orders

vector<call_order_object>
graphene::wallet::wallet_api::get_call_orders(string a, uint32_t limit) const

get_settle_orders

vector<force_settlement_object>
graphene::wallet::wallet_api::get_settle_orders(string a, uint32_t limit)
const

9.6.1.6 Asset Calls

list_assets

vector<asset_object> graphene::wallet::wallet_api::list_assets(const string
&lowerbound, uint32_t limit) const
Lists all assets registered on the blockchain. To list all assets, pass the empty string "" for the
lowerbound to start at the beginning of the list, and iterate as necessary.
Return
the list of asset objects, ordered by symbol
Parameters

• lowerbound: the symbol of the first asset to include in the list.
• limit: the maximum number of assets to return (max: 100)

create_asset

signed_transaction graphene::wallet::wallet_api::create_asset(string issuer,
string symbol, uint8_t precision, asset_options common,
fc::optional<bitasset_options> bitasset_opts, bool broadcast = false)
Creates a new user-issued or market-issued asset. Many options can be changed later using
update_asset(). Right now this function is difficult to use because you must provide raw JSON
data structures for the options objects, and those include prices and asset ids.
Return
the signed transaction creating a new asset
Parameters

• issuer: the name or id of the account who will pay the fee and become the issuer of the
new asset. This can be updated later

• symbol: the ticker symbol of the new asset
• precision: the number of digits of precision to the right of the decimal point, must be less

than or equal to 12
• common: asset options required for all new assets. Note that core_exchange_rate

technically needs to store the asset ID of this new asset. Since this ID is not known at
the time this operation is created, create this price as though the new asset has instance
ID 1, and the chain will overwrite it with the new asset’s ID.

• bitasset_opts: options specific to BitAssets. This may be null unless the market_issued
flag is set in common.flags

• broadcast: true to broadcast the transaction on the network

65 | P a g e

update_asset

signed_transaction graphene::wallet::wallet_api::update_asset(string symbol,
optional<string> new_issuer, asset_options new_options, bool broadcast =
false)
Update the core options on an asset. There are a number of options which all assets in the
network use. These options are enumerated in the asset_object::asset_options struct. This
command is used to update these options for an existing asset.
Note: This operation cannot be used to update BitAsset-specific options. For these options,
update_bitasset() instead.
Return
the signed transaction updating the asset
Parameters

• symbol: the name or id of the asset to update
• new_issuer: if changing the asset’s issuer, the name or id of the new issuer. null if you

wish to remain the issuer of the asset
• new_options: the new asset_options object, which will entirely replace the existing

options.
• broadcast: true to broadcast the transaction on the network

update_bitasset

signed_transaction graphene::wallet::wallet_api::update_bitasset(string
symbol, bitasset_options new_options, bool broadcast = false)
Update the options specific to a BitAsset. BitAssets have some options which are not relevant to
other asset types. This operation is used to update those options an an existing BitAsset.
See
update_asset()
Return
the signed transaction updating the bitasset
Parameters

• symbol: the name or id of the asset to update, which must be a market-issued asset
• new_options: the new bitasset_options object, which will entirely replace the existing

options.
• broadcast: true to broadcast the transaction on the network

update_asset_feed_producers

signed_transaction
graphene::wallet::wallet_api::update_asset_feed_producers(string symbol,
flat_set<string> new_feed_producers, bool broadcast = false)
Update the set of feed-producing accounts for a BitAsset. BitAssets have price feeds selected
by taking the median values of recommendations from a set of feed producers. This command
is used to specify which accounts may produce feeds for a given BitAsset.
Return
the signed transaction updating the bitasset’s feed producers
Parameters

• symbol: the name or id of the asset to update

66 | P a g e

• new_feed_producers: a list of account names or ids which are authorized to produce
feeds for the asset. this list will completely replace the existing list

• broadcast: true to broadcast the transaction on the network

publish_asset_feed

signed_transaction graphene::wallet::wallet_api::publish_asset_feed(string
publishing_account, string symbol, price_feed feed, bool broadcast = false)
Publishes a price feed for the named asset. Price feed providers use this command to publish
their price feeds for market-issued assets. A price feed is used to tune the market for a
particular market-issued asset. For each value in the feed, the median across all
committee_member feeds for that asset is calculated and the market for the asset is configured
with the median of that value. The feed object in this command contains three prices: a call
price limit, a short price limit, and a settlement price. The call limit price is structured as
(collateral asset) / (debt asset) and the short limit price is structured as (asset for sale) /
(collateral asset). Note that the asset IDs are opposite to each other, so if we’re publishing a
feed for USD, the call limit price will be CORE/USD and the short limit price will be USD/CORE.
The settlement price may be flipped either direction, as long as it is a ratio between the market-
issued asset and its collateral.
Return
the signed transaction updating the price feed for the given asset
Parameters

• publishing_account: the account publishing the price feed
• symbol: the name or id of the asset whose feed we’re publishing
• feed: the price_feed object containing the three prices making up the feed
• broadcast: true to broadcast the transaction on the network

issue_asset

signed_transaction graphene::wallet::wallet_api::issue_asset(string
to_account, string amount, string symbol, string memo, bool broadcast =
false)
Issue new shares of an asset.
Return
the signed transaction issuing the new shares
Parameters

• to_account: the name or id of the account to receive the new shares
• amount: the amount to issue, in nominal units
• symbol: the ticker symbol of the asset to issue
• memo: a memo to include in the transaction, readable by the recipient
• broadcast: true to broadcast the transaction on the network

issue_webasset

signed_transaction graphene::wallet::wallet_api::issue_webasset(string
to_account, string amount, string reserved, bool broadcast = false)
Issue webasset to an account’s balance.
Return

67 | P a g e

the signed transaction issuing webasset
Parameters

• to_account: the name or id of the account to receive the new shares
• amount: the amount to issue, in nominal units
• reserved: reserved amount to issue, in nominal units
• broadcast: true to broadcast the transaction on the network

get_asset

asset_object graphene::wallet::wallet_api::get_asset(string asset_name_or_id)
const
Returns information about the given asset.
Return
the information about the asset stored in the blockchain
Parameters

• asset_name_or_id: the symbol or id of the asset in question

get_asset_id

asset_id_type graphene::wallet::wallet_api::get_asset_id(string
asset_name_or_id) const
Lookup the id of a named asset.
Return
the id of the given asset
Parameters

• asset_name_or_id: the symbol or id of the asset in question

get_bitasset_data

asset_bitasset_data_object
graphene::wallet::wallet_api::get_bitasset_data(string asset_name_or_id)
const
Returns the BitAsset-specific data for a given asset. Market-issued assets’s behavior are
determined both by their “BitAsset Data” and their basic asset data, as returned by get_asset().
Return
the BitAsset-specific data for this asset
Parameters

• asset_name_or_id: the symbol or id of the BitAsset in question

fund_asset_fee_pool

signed_transaction graphene::wallet::wallet_api::fund_asset_fee_pool(string
from, string symbol, string amount, bool broadcast = false)
Pay into the fee pool for the given asset. User-issued assets can optionally have a pool of the
core asset which is automatically used to pay transaction fees for any transaction using that
asset (using the asset’s core exchange rate). This command allows anyone to deposit the core
asset into this fee pool.
Return

68 | P a g e

the signed transaction funding the fee pool
Parameters

• from: the name or id of the account sending the core asset
• symbol: the name or id of the asset whose fee pool you wish to fund
• amount: the amount of the core asset to deposit
• broadcast: true to broadcast the transaction on the network

reserve_asset

signed_transaction graphene::wallet::wallet_api::reserve_asset(string from,
string amount, string symbol, bool broadcast = false)
Burns the given user-issued asset. This command burns the user-issued asset to reduce the
amount in circulation. Note: you cannot burn market-issued assets.
Return
the signed transaction burning the asset
Parameters

• from: the account containing the asset you wish to burn
• amount: the amount to burn, in nominal units
• symbol: the name or id of the asset to burn
• broadcast: true to broadcast the transaction on the network

global_settle_asset

signed_transaction graphene::wallet::wallet_api::global_settle_asset(string
symbol, price settle_price, bool broadcast = false)
Forces a global settling of the given asset (black swan or prediction markets). In order to use
this operation, asset_to_settle must have the global_settle flag set. When this operation is
executed all balances are converted into the backing asset at the settle_price and all open
margin positions are called at the settle price. If this asset is used as backing for other bitassets,
those bitassets will be force settled at their current feed price. Note: this operation is used only
by the asset issuer, settle_asset() may be used by any user owning the asset
Return
the signed transaction settling the named asset
Parameters

• symbol: the name or id of the asset to force settlement on
• settle_price: the price at which to settle
• broadcast: true to broadcast the transaction on the network

9.6.1.7 Licence Calls

issue_license

signed_transaction graphene::wallet::wallet_api::issue_license(const string&
issuer, const string& account, const string& license, share_type
bonus_percentage, frequency_type frequency, bool broadcast = false);
Issue a license to an account. This will create a license request object that can be denied by the
license authentication authority.
Return
The signed version of the transaction

69 | P a g e

Parameters
• issuer: this MUST be the license issuing chain authority.
• account: the account that will benefit the license.
• license: the id of the license that will be granted to the account.
• bonus_percentage: bonus percentage of license base cycles to be issued. Value must

be greater than -100.
• frequency: frequency lock for this license.
• broadcast: true if you wish to broadcast the transaction.

get_license_types

vector<license_type_object> graphene::wallet::wallet_api::get_license_types()
const
Get all license type ids found on the blockchain
Returns
Vector of license type ids

get_license_type_names_ids

vector<pair<string, license_type_id_type>>
graphene::wallet::wallet_api::get_license_type_names_ids() const;
Get names and license type ids found on the blockchain.
Return
Vector of license name/type-ids pairs

get_license_information

vector<optional<license_information_object>>
graphene::wallet::wallet_api::get_license_information(const
vector<account_id_type>& account_ids) const;
Get a list of account issued license types. This function has semantics identical to get_objects.
Return
Vector of issued license information objects
Parameters

• account_ids: IDs of the accounts to retrieve.

9.6.1.8 Reward Queue Calls

update_queue_parameters

signed_transaction
graphene::wallet::wallet_api::update_queue_parameters(optional<bool>
enable_dascoin_queue, optional<uint32_t> reward_interval_time_seconds,
optional<share_type> dascoin_reward_amount, bool broadcast) const;
Update various reward queue parameters
Return
signed transaction updating the queue
Parameters

70 | P a g e

• enable_dascoin_queue: true if minting is enabled
• reward_interval_time_seconds: the time interval between DasCoin reward events
• dascoin_reward_amount: the amount of DasCoins produced on the DasCoin reward

event
• broadcast: true if you wish to broadcast the transaction

get_order_book

order_book graphene::wallet::wallet_api::get_order_book(const string& base,
const string& quote, unsigned limit = 50)
Returns the order book for the market base:quote.
Return
Order book of the market
Parameters

• base: name of the first asset
• quote: name of the second asset
• limit: of the order book. Up to limit of each asks and bids, capped at 50. Prioritizes most

moderate of each

get_reward_queue_size

uint32_t graphene::wallet::wallet_api::get_reward_queue_size() const
Gives the size of the DASCoin reward queue
Return
Number of elements in the DASCoin queue

get_reward_queue

vector<reward_queue_object> graphene::wallet::wallet_api::get_reward_queue()
const
Gives the entire reward queue.
Return
Vector of all reward queue objects

get_reward_queue_by_page

vector<reward_queue_object>
graphene::wallet::wallet_api::get_reward_queue_by_page(uint32_t from,
uint32_t amount) const
Returns a part of the reward queue.
Return
Vector of reward queue objects
Parameters

• from: Starting page
• amount: Number of pages to get

get_queue_submissions_with_pos

71 | P a g e

acc_id_queue_subs_w_pos_res get_queue_submissions_with_pos(account_id_type
account_id) const
Get all current submissions to reward queue by account id
Return All elements on DasCoin reward queue submitted by given account
Parameters

• account_id: id of account whose submissions should be returned

9.6.1.9 Requests Inspection

get_all_webasset_issue_requests

vector<issue_asset_request_object>
graphene::app::database_api::get_all_webasset_issue_requests() const
Get all webasset issue request objects, sorted by expiration.
Return
Vector of webasset issue request objects.

get_all_wire_out_holders

vector<wire_out_holder_object>
graphene::app::database_api::get_all_wire_out_holders() const
Get all wire out holder objects.
Return
Vector of wire out holder objects.

get_all_wire_out_with_fee_holder

vector<wire_out_with_fee_holder_object>
graphene::app::database_api::get_all_wire_out_with_fee_holders() const
Get all wire out with fee holder objects.
Return
Vector of wire out with fee holder objects.

9.6.1.10 Governance

create_committee_member

signed_transaction
graphene::wallet::wallet_api::create_committee_member(string owner_account,
string url, bool broadcast = false)
Creates a committee_member object owned by the given account. An account can have at most
one committee_member object.
Return
the signed transaction registering a committee_member
Parameters

• owner_account: the name or id of the account which is creating the committee_member
• url: a URL to include in the committee_member record in the blockchain. Clients may

display this when showing a list of committee_members. May be blank.

72 | P a g e

• broadcast: true to broadcast the transaction on the network

get_witness

witness_object graphene::wallet::wallet_api::get_witness(string
owner_account)
Returns information about the given witness.
Return
the information about the witness stored in the blockchain
Parameters

• owner_account: the name or id of the witness account owner, or the id of the witness

get_committee_member

committee_member_object
graphene::wallet::wallet_api::get_committee_member(string owner_account)
Returns information about the given committee_member.
Return
the information about the committee_member stored in the blockchain
Parameters

• owner_account: the name or id of the committee_member account owner, or the id of
the committee_member

list_witnesses

map<string, witness_id_type>
graphene::wallet::wallet_api::list_witnesses(const string &lowerbound,
uint32_t limit)
Lists all witnesses registered in the blockchain. This returns a list of all account names that own
witnesses, and the associated witness id, sorted by name. This lists witnesses whether they are
currently voted in or not. Use the lowerbound and limit parameters to page through the list. To
retrieve all witnesses, start by setting lowerbound to the empty string "", and then each iteration,
pass the last witness name returned as the lowerbound for the next list_witnesss() call.
Return
a list of witnesses mapping witness names to witness ids
Parameters

• lowerbound: the name of the first witness to return. If the named witness does not exist,
the list will start at the witness that comes after lowerbound

• limit: the maximum number of witnesses to return (max: 1000)

list_committee_members

map<string, committee_member_id_type>
graphene::wallet::wallet_api::list_committee_members(const string
&lowerbound, uint32_t limit)

73 | P a g e

Lists all committee_members registered in the blockchain. This returns a list of all account
names that own committee_members, and the associated committee_member id, sorted by
name. This lists committee_members whether they are currently voted in or not. Use the
lowerbound and limit parameters to page through the list. To retrieve all committee_members,
start by setting lowerbound to the empty string "", and then each iteration, pass the last
committee_member name returned as the lowerbound for the next list_committee_members()
call.
Return
a list of committee_members mapping committee_member names to committee_member ids
Parameters

• lowerbound: the name of the first committee_member to return. If the named
committee_member does not exist, the list will start at the committee_member that
comes after lowerbound

• limit: the maximum number of committee_members to return (max: 1000)

create_witness

signed_transaction graphene::wallet::wallet_api::create_witness(string
owner_account, string url, bool broadcast = false)
Creates a witness object owned by the given account. An account can have at most one
witness object.
Return
the signed transaction registering a witness
Parameters

• owner_account: the name or id of the account which is creating the witness
• url: a URL to include in the witness record in the blockchain. Clients may display this

when showing a list of witnesses. May be blank.
• broadcast: true to broadcast the transaction on the network

update_witness

signed_transaction graphene::wallet::wallet_api::update_witness(string
witness_name, string url, string block_signing_key, bool broadcast = false)
Update a witness object owned by the given account.
Return
signed transaction
Parameters

• witness: The name of the witness’s owner account. Also accepts the ID of the owner
account or the ID of the witness.

• url: Same as for create_witness. The empty string makes it remain the same.
• block_signing_key: The new block signing public key. The empty string makes it remain

the same.
• broadcast: true if you wish to broadcast the transaction.

create_worker

signed_transaction graphene::wallet::wallet_api::create_worker(string
owner_account, time_point_sec work_begin_date, time_point_sec work_end_date,

74 | P a g e

share_type daily_pay, string name, string url, variant worker_settings, bool
broadcast = false)
Create a worker object.
Parameters

• owner_account: The account which owns the worker and will be paid
• work_begin_date: When the work begins
• work_end_date: When the work ends
• daily_pay: Amount of pay per day (NOT per maint interval)
• name: Any text
• url: Any text
• worker_settings: {“type” : “burn”|”refund”|”vesting”, “pay_vesting_period_days” : x}
• broadcast: true if you wish to broadcast the transaction.

update_worker_votes

signed_transaction graphene::wallet::wallet_api::update_worker_votes(string
account, worker_vote_delta delta, bool broadcast = false)
Update your votes for a worker
Parameters

• account: The account which will pay the fee and update votes.
• worker_vote_delta: {“vote_for” : […], “vote_against” : […], “vote_abstain” : […]}
• broadcast: true if you wish to broadcast the transaction.

vote_for_committee_member

signed_transaction
graphene::wallet::wallet_api::vote_for_committee_member(string
voting_account, string committee_member, bool approve, bool broadcast =
false)
Vote for a given committee_member. An account can publish a list of all committee_memberes
they approve of. This command allows you to add or remove committee_memberes from this
list. Each account’s vote is weighted according to the number of shares of the core asset owned
by that account at the time the votes are tallied. Note: you cannot vote against a
committee_member, you can only vote for the committee_member or not vote for the
committee_member.
Return
the signed transaction changing your vote for the given committee_member
Parameters

• voting_account: the name or id of the account who is voting with their shares
• committee_member: the name or id of the committee_member’ owner account
• approve: true if you wish to vote in favor of that committee_member, false to remove

your vote in favor of that committee_member
• broadcast: true if you wish to broadcast the transaction

75 | P a g e

vote_for_witness

signed_transaction graphene::wallet::wallet_api::vote_for_witness(string
voting_account, string witness, bool approve, bool broadcast = false)
Vote for a given witness. An account can publish a list of all witnesses they approve of. This
command allows you to add or remove witnesses from this list. Each account’s vote is weighted
according to the number of shares of the core asset owned by that account at the time the votes
are tallied. Note: you cannot vote against a witness, you can only vote for the witness or not
vote for the witness.
Return
the signed transaction changing your vote for the given witness
Parameters

• voting_account: the name or id of the account who is voting with their shares
• witness: the name or id of the witness’ owner account
• approve: true if you wish to vote in favor of that witness, false to remove your vote in

favor of that witness
• broadcast: true if you wish to broadcast the transaction

set_voting_proxy

signed_transaction graphene::wallet::wallet_api::set_voting_proxy(string
account_to_modify, optional<string> voting_account, bool broadcast = false)
Set the voting proxy for an account. If a user does not wish to take an active part in voting, they
can choose to allow another account to vote their stake. Setting a vote proxy does not remove
your previous votes from the blockchain, they remain there but are ignored. If you later null out
your vote proxy, your previous votes will take effect again. This setting can be changed at any
time.
Return
the signed transaction changing your vote proxy settings
Parameters

• account_to_modify: the name or id of the account to update
• voting_account: the name or id of an account authorized to vote account_to_modify’s

shares, or null to vote your own shares
• broadcast: true if you wish to broadcast the transaction

set_desired_witness_and_committee_member_count

signed_transaction
graphene::wallet::wallet_api::set_desired_witness_and_committee_member_count(
string account_to_modify, uint16_t desired_number_of_witnesses, uint16_t
desired_number_of_committee_members, bool broadcast = false)
Set your vote for the number of witnesses and committee_members in the system. Each
account can voice their opinion on how many committee_members and how many witnesses
there should be in the active committee_member/active witness list. These are independent of
each other. You must vote your approval of at least as many committee_members or witnesses
as you claim there should be (you can’t say that there should be 20 committee_members but
only vote for 10). There are maximum values for each set in the blockchain parameters
(currently defaulting to 1001). This setting can be changed at any time. If your account has a
voting proxy set, your preferences will be ignored.

76 | P a g e

Return
the signed transaction changing your vote proxy settings
Parameters

• account_to_modify: the name or id of the account to update
• number_of_committee_members: the number
• broadcast: true if you wish to broadcast the transaction

propose_parameter_change

signed_transaction
graphene::wallet::wallet_api::propose_parameter_change(const string
&proposing_account, fc::time_point_sec expiration_time, const variant_object
&changed_values, bool broadcast = false)
Creates a transaction to propose a parameter change. Multiple parameters can be specified if
an atomic change is desired.
Return
the signed version of the transaction
Parameters

• proposing_account: The account paying the fee to propose the tx
• expiration_time: Timestamp specifying when the proposal will either take effect or expire.
• changed_values: The values to change; all other chain parameters are filled in with

default values
• broadcast: true if you wish to broadcast the transaction

propose_fee_change

signed_transaction graphene::wallet::wallet_api::propose_fee_change(const
string &proposing_account, fc::time_point_sec expiration_time, const
variant_object &changed_values, bool broadcast = false)
Propose a fee change.
Return
the signed version of the transaction
Parameters

• proposing_account: The account paying the fee to propose the tx
• expiration_time: Timestamp specifying when the proposal will either take effect or expire.
• changed_values: Map of operation type to new fee. Operations may be specified by

name or ID. The “scale” key changes the scale. All other operations will maintain current
values.

• broadcast: true if you wish to broadcast the transaction

9.6.1.11 Privacy Mode

set_key_label

77 | P a g e

bool graphene::wallet::wallet_api::set_key_label(public_key_type key, string
label)
These methods are used for stealth transfers This method can be used to set the label for a
public key. Note: No two keys can have the same label.
Return
true if the label was set, otherwise false

get_key_label

string graphene::wallet::wallet_api::get_key_label(public_key_type key) const

get_public_key

public_key_type graphene::wallet::wallet_api::get_public_key(string label)
const
Return
the public key associated with the given label

get_blind_accounts

map<string, public_key_type>
graphene::wallet::wallet_api::get_blind_accounts() const
Return
all blind accounts

get_my_blind_accounts

map<string, public_key_type>
graphene::wallet::wallet_api::get_my_blind_accounts() const
Return
all blind accounts for which this wallet has the private key

get_blind_balances

vector<asset> graphene::wallet::wallet_api::get_blind_balances(string
key_or_label)
Return
the total balance of all blinded commitments that can be claimed by the given account key or
label

create_blind_account

78 | P a g e

public_key_type graphene::wallet::wallet_api::create_blind_account(string
label, string brain_key)
Generates a new blind account for the given brain key and assigns it the given label.

transfer_to_blind

blind_confirmation graphene::wallet::wallet_api::transfer_to_blind(string
from_account_id_or_name, string asset_symbol, vector<pair<string, string>>
to_amounts, bool broadcast = false)
Transfers a public balance from to one or more blinded balances using a stealth transfer.
Parameters

• to_amounts: map from key or label to amount

transfer_from_blind

blind_confirmation graphene::wallet::wallet_api::transfer_from_blind(string
from_blind_account_key_or_label, string to_account_id_or_name, string amount,
string asset_symbol, bool broadcast = false)
Transfers funds from a set of blinded balances to a public account balance.

blind_transfer

blind_confirmation graphene::wallet::wallet_api::blind_transfer(string from_key_or_label, string
to_key_or_label, string amount, string symbol, bool broadcast = false)
Used to transfer from one set of blinded balances to another

blind_history

vector<blind_receipt> graphene::wallet::wallet_api::blind_history(string
key_or_account)
Return
all blind receipts to/form a particular account

receive_blind_transfer

blind_receipt graphene::wallet::wallet_api::receive_blind_transfer(string
confirmation_receipt, string opt_from, string opt_memo)
Given a confirmation receipt, this method will parse it for a blinded balance and confirm that it
exists in the blockchain. If it exists then it will report the amount received and who sent it.
Parameters

• confirmation_receipt: a base58 encoded stealth confirmation
• opt_from: if not empty and the sender is a unknown public key, then the unknown public

key will be given the label opt_from

9.6.1.12 Blockchain Inspection

get_block

79 | P a g e

optional<signed_block_with_info>
graphene::wallet::wallet_api::get_block(uint32_t num)

get_account_count

uint64_t graphene::wallet::wallet_api::get_account_count() const
Returns the number of accounts registered on the blockchain

get_global_properties

global_property_object graphene::wallet::wallet_api::get_global_properties()
const
Returns the block chain’s slowly-changing settings. This object contains all of the properties of
the blockchain that are fixed or that change only once per maintenance interval (daily) such as
the current list of witnesses, committee_members, block interval, etc.
See
get_dynamic_global_properties() for frequently changing properties

get_dynamic_global_properties

dynamic_global_property_object
graphene::wallet::wallet_api::get_dynamic_global_properties() const
Returns the block chain’s rapidly-changing properties. The returned object contains information
that changes every block interval such as the head block number, the next witness, etc.
See
get_global_properties() for less-frequently changing properties

get_object

variant graphene::wallet::wallet_api::get_object(object_id_type id) const
Returns the blockchain object corresponding to the given id. This generic function can be used
to retrieve any object from the blockchain that is assigned an ID. Certain types of objects have
specialized convenience functions to return their objects e.g., assets have get_asset(), accounts
have get_account(), but this function will work for any object.
Return
the requested object
Parameters

• id: the id of the object to return

9.6.1.13 Transaction Builder

begin_builder_transaction

transaction_handle_type
graphene::wallet::wallet_api::begin_builder_transaction()

80 | P a g e

add_operation_to_builder_transaction

void
graphene::wallet::wallet_api::add_operation_to_builder_transaction(transactio
n_handle_type transaction_handle, const operation &op)

replace_operation_in_builder_transaction

void
graphene::wallet::wallet_api::replace_operation_in_builder_transaction(transa
ction_handle_type handle, unsigned operation_index, const operation &new_op)

set_fees_on_builder_transaction

asset
graphene::wallet::wallet_api::set_fees_on_builder_transaction(transaction_han
dle_type handle, string fee_asset = GRAPHENE_SYMBOL)

preview_builder_transaction

transaction
graphene::wallet::wallet_api::preview_builder_transaction(transaction_handle_
type handle)

sign_builder_transaction

signed_transaction
graphene::wallet::wallet_api::sign_builder_transaction(transaction_handle_typ
e transaction_handle, bool broadcast = true)

propose_builder_transaction

signed_transaction
graphene::wallet::wallet_api::propose_builder_transaction(transaction_handle_
type handle, time_point_sec expiration = time_point::now()+fc::minutes(1),
uint32_t review_period_seconds = 0, bool broadcast = true)

propose_builder_transaction2

signed_transaction
graphene::wallet::wallet_api::propose_builder_transaction2(transaction_handle

81 | P a g e

_type handle, string account_name_or_id, time_point_sec expiration =
time_point::now()+fc::minutes(1), uint32_t review_period_seconds = 0, bool
broadcast = true)

remove_builder_transaction

void
graphene::wallet::wallet_api::remove_builder_transaction(transaction_handle_t
ype handle)

serialize_transaction

string graphene::wallet::wallet_api::serialize_transaction(signed_transaction
tx) const
Converts a signed_transaction in JSON form to its binary representation.
Return
the binary form of the transaction. It will not be hex encoded, this returns a raw string that may
have null characters embedded in it
Parameters

• tx: the transaction to serialize

sign_transaction

signed_transaction
graphene::wallet::wallet_api::sign_transaction(signed_transaction tx, bool
broadcast = false)
Signs a transaction. Given a fully-formed transaction that is only lacking signatures, this signs
the transaction with the necessary keys and optionally broadcasts the transaction
Return
the signed version of the transaction
Parameters

• tx: the unsigned transaction
• broadcast: true if you wish to broadcast the transaction

sign_transaction_with_keys

signed_transaction
graphene::wallet::wallet_api::sign_transaction(signed_transaction tx,
std::vector<string> wif_keys, bool broadcast = false)
Signs a transaction. Given a fully-formed transaction that is only lacking signatures and a list of
keys, this signs the transaction and optionally broadcasts the transaction
Return
the signed version of the transaction
Parameters

• tx: the unsigned transaction
• wif_keys: list of keys
• broadcast: true if you wish to broadcast the transaction

82 | P a g e

get_prototype_operation

operation graphene::wallet::wallet_api::get_prototype_operation(string
operation_type)
Returns an uninitialized object representing a given blockchain operation. This returns a default-
initialized object of the given type; it can be used during early development of the wallet when
we don’t yet have custom commands for creating all of the operations the blockchain supports.
Any operation the blockchain supports can be created using the transaction builder’s
add_operation_to_builder_transaction() , but to do that from the CLI you need to know what the
JSON form of the operation looks like. This will give you a template you can fill in. It’s better
than nothing.
Return
a default-constructed operation of the given type
Parameters

• operation_type: the type of operation to return, must be one of the operations defined in
graphene/chain/operations.hpp (e.g., “global_parameters_update_operation”)

83 | P a g e

10 Appendix B: Operations
Here is a full list of our operations and their details.

transfer_operation

Transfer an amount from one account to another. Fees are paid by the "from" account
Parameters

• asset fee
• account_id_type from: Account to transfer asset from.
• account_id_type to: Account to transfer asset to.
• asset amount: The amount of asset to transfer from from to to.
• optional<memo_data> memo: User provided data encrypted to the memo key of the "to"

account.
• extensions_type extensions

Precondition
• amount.amount > 0
• fee.amount >= 0
• from != to

Postcondition
• from account's balance will be reduced by fee and amount
• to account's balance will be increased by amount

limit_order_create_operation

instructs the blockchain to attempt to sell one asset for another. The blockchain will atempt to
sell amount_to_sell.asset_id for as much min_to_receive.asset_id as possible. The fee will be
paid by the seller's account. Market fees will apply as specified by the issuer of both the selling
asset and the receiving asset as a percentage of the amount exchanged. If either the selling
asset or the receiving asset is white list restricted, the order will only be created if the seller is on
the white list of the restricted asset type. Market orders are matched in the order they are
included in the blockchain.
Parameters

• asset fee
• account_id_type seller
• asset amount_to_sell
• asset min_to_receive
• share_type reserved_amount
• optional<account_id_type> account_to_credit
• time_point_sec expiration = time_point_sec::maximum()
• bool fill_or_kill = false: If this flag is set the entire order must be filled or the operation is

rejected
• extensions_type extensions

limit_order_cancel_operation

Used to cancel an existing limit order. Both fee_pay_account and the account to receive the
proceeds must be the same as order->seller.
Returns

84 | P a g e

the amount actually refunded
Parameters

• asset fee
• limit_order_id_type order
• account_id_type fee_paying_account
• extensions_type extensions

call_order_update_operation

This operation can be used to add collateral, cover, and adjust the margin call price for a
particular user. For prediction markets the collateral and debt must always be equal. This
operation will fail if it would trigger a margin call that couldn't be filled. If the margin call hits the
call price limit then it will fail if the call price is above the settlement price.
Note: this operation can be used to force a market order using the collateral without requiring
outside funds.
Parameters

• asset fee
• account_id_type funding_account: pays fee, collateral, and cover
• asset delta_collateral: the amount of collateral to add to the margin position
• asset delta_debt: the amount of the debt to be paid off, may be negative to issue new

debt
• extensions_type extensions

account_create_operation

Create an account
Parameters

• asset fee
• uint8_t kind: The account kind: wallet, vault, special...
• account_id_type registrar: This MUST BE the current registrar chain authority.
• account_id_type referrer: This account receives a portion of the fee split between

registrar and referrer. Must be a member.
• uint16_t referrer_percent = 0
• string name
• authority owner
• authority active
• account_options options
• extension<ext> extensions

account_update_operation

Update an existing account. This operation is used to update an existing account. It can be used
to update the authorities, or adjust the options on the account. See
account_object::options_type for the options which may be updated.
Parameters

• asset fee
• account_id_type account: The account to update.

85 | P a g e

• optional<authority> owner: New owner authority. If set, this operation requires owner
authority to execute.

• optional<authority> active: New active authority. This can be updated by the current
active authority.

• optional<account_options> new_options: New account options.
• extension<ext_account_update_operation> extensions

account_whitelist_operation

This operation is used to whitelist and blacklist accounts, primarily for transacting in whitelisted
assets.
Accounts can freely specify opinions about other accounts, in the form of either whitelisting or
blacklisting them. This information is used in chain validation only to determine whether an
account is authorized to transact in an asset type which enforces a whitelist, but third parties
can use this information for other uses as well, as long as it does not conflict with the use of
whitelisted assets.
An asset which enforces a whitelist specifies a list of accounts to maintain its whitelist, and a list
of accounts to maintain its blacklist. In order for a given account A to hold and transact in a
whitelisted asset S, A must be whitelisted by at least one of S's whitelist_authorities and
blacklisted by none of S's blacklist_authorities. If A receives a balance of S, and is later
removed from the whitelist(s) which allowed it to hold S, or added to any blacklist S specifies as
authoritative, A's balance of S will be frozen until A's authorization is reinstated.
This operation requires authorizing_account's signature, but not account_to_list's. The fee is
paid by authorizing_account.
Parameters

• asset fee: Paid by authorizing_account.
• account_id_type authorizing_account: The account which is specifying an opinion of

another account.
• account_id_type account_to_list: The account being opined about.
• uint8_t new_listing = no_listing
• extensions_type extensions

account_upgrade_operation

Manage an account's membership status. This operation is used to upgrade an account to a
member, or renew its subscription. If an account which is an unexpired annual subscription
member publishes this operation with upgrade_to_lifetime_member set to false, the account's
membership expiration date will be pushed backward one year. If a basic account publishes it
with upgrade_to_lifetime_member set to false, the account will be upgraded to a subscription
member with an expiration date one year after the processing time of this operation.
Any account may use this operation to become a lifetime member by setting
upgrade_to_lifetime_member to true. Once an account has become a lifetime member, it may
not use this operation anymore.
Parameters

• asset fee
• account_id_type account_to_upgrade: The account to upgrade; must not already be a

lifetime member.
• bool upgrade_to_lifetime_member = false: If true, the account will be upgraded to a

lifetime member; otherwise, it will add a year to the subscription.

86 | P a g e

• extensions_type extensions

account_transfer_operation

Transfers the account to another account while clearing the white list. In theory an account can
be transferred by simply updating the authorities, but that kind of transfer lacks semantic
meaning and is more often done to rotate keys without transferring ownership. This operation is
used to indicate the legal transfer of title to this account and a break in the operation history.
The account_id's owner/active/voting/memo authority should be set to new_owner
This operation will clear the account's whitelist statuses, but not the blacklist statuses.
Parameters

• asset fee
• account_id_type account_id
• account_id_type new_owner
• extensions_type extensions

asset_create_operation

Creates asset
Parameters

• asset fee
• account_id_type issuer: This account must sign and pay the fee for this operation. Later,

this account may update the asset.
• string symbol: The ticker symbol of this asset.
• uint8_t precision = 0: Number of digits to the right of decimal point, must be less than or

equal to 12.
• asset_options common_options
• optional<bitasset_options> bitasset_opts
• bool is_prediction_market = false: For BitAssets, set this to true if the asset implements

a Prediction Market; false otherwise.
• extensions_type extensions

asset_update_operation

Update options common to all assets. There are a number of options which all assets in the
network use. These options are enumerated in the asset_options struct. This operation is used
to update these options for an existing asset.
Note: This operation cannot be used to update BitAsset-specific options. For these options, use
asset_update_bitasset_operation instead.
Parameters

• asset fee
• account_id_type issuer
• asset_id_type asset_to_update
• optional<account_id_type> new_issuer: If the asset is to be given a new issuer, specify

his ID here.
• asset_options new_options
• extensions_type extensions

Precondition

87 | P a g e

• issuer SHALL be an existing account and MUST match asset_object::issuer on
asset_to_update

• fee SHALL be nonnegative, and issuer MUST have a sufficient balance to pay it
• new_options SHALL be internally consistent, as verified by validate()

Postcondition
• asset_to_update will have options matching those of new_options

asset_update_bitasset_operation

Update options specific to BitAssets. BitAssets have some options which are not relevant to
other asset types. This operation is used to update those options an an existing BitAsset.
Parameters

• asset fee
• account_id_type issuer
• asset_id_type asset_to_update
• bitasset_options new_options
• extensions_type extensions

Precondition
• issuer MUST be an existing account and MUST match asset_object::issuer on

asset_to_update
• asset_to_update MUST be a BitAsset, i.e. asset_object::is_market_issued() returns true
• fee MUST be nonnegative, and issuer MUST have a sufficient balance to pay it
• new_options SHALL be internally consistent, as verified by validate()

Postcondition
• asset_to_update will have BitAsset-specific options matching those of new_options

asset_update_feed_producers_operation

Update the set of feed-producing accounts for a BitAsset. BitAssets have price feeds selected
by taking the median values of recommendations from a set of feed producers. This operation is
used to specify which accounts may produce feeds for a given BitAsset.
Parameters

• asset fee
• account_id_type issuer
• asset_id_type asset_to_update
• flat_set<account_id_type> new_feed_producers
• extensions_type extensions

Precondition
• issuer MUST be an existing account, and MUST match asset_object::issuer on

asset_to_update
• issuer MUST NOT be the committee account
• asset_to_update MUST be a BitAsset, i.e. asset_object::is_market_issued() returns true
• fee MUST be nonnegative, and issuer MUST have a sufficient balance to pay it
• Cardinality of new_feed_producers MUST NOT exceed

chain_parameters::maximum_asset_feed_publishers
Postcondition

• asset_to_update will have a set of feed producers matching new_feed_producers
• All valid feeds supplied by feed producers in new_feed_producers, which were already

feed producers prior to execution of this operation, will be preserved

88 | P a g e

asset_issue_operation

Issues asset to an account
Parameters

• asset fee
• account_id_type issuer: Must be asset_to_issue->asset_id->issuer.
• asset asset_to_issue
• account_id_type issue_to_account
• optional<memo_data> memo
• extensions_type extensions

asset_reserve_operation

used to take an asset out of circulation, returning to the issuer. Note: You cannot use this
operation on market-issued assets.
Parameters

• asset fee
• account_id_type payer
• asset amount_to_reserve
• extensions_type extensions

asset_fund_fee_pool_operation

Parameters
• asset fee: core asset
• account_id_type from_account
• asset_id_type asset_id
• share_type amount: core asset
• extensions_type extensions

asset_settle_operation

Schedules a market-issued asset for automatic settlement. Holders of market-issued assests
may request a forced settlement for some amount of their asset. This means that the specified
sum will be locked by the chain and held for the settlement period, after which time the chain will
choose a margin posision holder and buy the settled asset using the margin's collateral. The
price of this sale will be based on the feed price for the market-issued asset being settled. The
exact settlement price will be the feed price at the time of settlement with an offset in favor of
the margin position, where the offset is a blockchain parameter set in the
global_property_object.
The fee is paid by account, and account must authorize this operation
Parameters

• asset fee
• account_id_type account: Account requesting the force settlement. This account pays

the fee.
• asset amount: Amount of asset to force settle. This must be a market-issued asset.
• extensions_type extensions

89 | P a g e

asset_global_settle_operation

allows global settling of bitassets (black swan or prediction markets). In order to use this
operation, asset_to_settle must have the global_settle flag set. When this operation is executed
all balances are converted into the backing asset at the settle_price and all open margin
positions are called at the settle price. If this asset is used as backing for other bitassets, those
bitassets will be force settled at their current feed price.
Parameters

• asset fee
• account_id_type issuer: must equal asset_to_settle->issuer
• asset_id_type asset_to_settle
• price settle_price
• extensions_type extensions

asset_publish_feed_operation

Publish price feeds for market-issued assets. Price feed providers use this operation to publish
their price feeds for market-issued assets. A price feed is used to tune the market for a
particular market-issued asset. For each value in the feed, the median across all
committee_member feeds for that asset is calculated and the market for the asset is configured
with the median of that value.
The feed in the operation contains three prices: a call price limit, a short price limit, and a
settlement price. The call limit price is structured as (collateral asset) / (debt asset) and the short
limit price is structured as (asset for sale) / (collateral asset). Note that the asset IDs are
opposite to each other, so if we're publishing a feed for USD, the call limit price will be
CORE/USD and the short limit price will be USD/CORE. The settlement price may be flipped
either direction, as long as it is a ratio between the market-issued asset and its collateral.
Parameters

• asset fee: paid for by publisher
• account_id_type publisher
• asset_id_type asset_id: asset for which the feed is published
• price_feed feed
• extensions_type extensions

witness_create_operation

Create a witness object, as a bid to hold a witness position on the network. Accounts which wish
to become witnesses may use this operation to create a witness object which stakeholders may
vote on to approve its position as a witness.
Parameters

• asset fee
• account_id_type witness_account: The account which owns the witness. This account

pays the fee for this operation
• string url
• public_key_type block_signing_key

90 | P a g e

witness_update_operation

Update a witness object's URL and block signing key
Parameters

• asset fee: paid for by publisher
• witness_id_type witness: The witness object to update.
• account_id_type witness_account: The account which owns the witness. This account

pays the fee for this operation.
• optional<string> new_url: The new URL.
• optional<public_key_type> new_signing_key: The new block signing key.

proposal_create_operation

The proposal_create_operation creates a transaction proposal, for use in multi-sig scenarios.
Creates a transaction proposal. The operations which compose the transaction are listed in
order in proposed_ops, and expiration_time specifies the time by which the proposal must be
accepted or it will fail permanently. The expiration_time cannot be farther in the future than the
maximum expiration time set in the global properties object.
Parameters

• asset fee
• account_id_type fee_paying_account
• vector<op_wrapper> proposed_ops
• time_point_sec expiration_time
• optional<uint32_t> review_period_seconds
• extensions_type extensions

proposal_update_operation

This operation allows accounts to add or revoke approval of a proposed transaction. Signatures
sufficient to satisfy the authority of each account in approvals are required on the transaction
containing this operation.
If an account with a multi-signature authority is listed in approvals_to_add or
approvals_to_remove, either all required signatures to satisfy that account's authority must be
provided in the transaction containing this operation, or a secondary proposal must be created
which contains this operation. Note: If the proposal requires only an account's active authority,
the account must not update adding its owner authority's approval. This is considered an error.
An owner approval may only be added if the proposal requires the owner's authority.
If an account's owner and active authority are both required, only the owner authority may
approve. An attempt to add or remove active authority approval to such a proposal will fail.
Parameters

• account_id_type fee_paying_account
• asset fee
• proposal_id_type proposal
• flat_set<account_id_type> active_approvals_to_add
• flat_set<account_id_type> active_approvals_to_remove
• flat_set<account_id_type> owner_approvals_to_add
• flat_set<account_id_type> owner_approvals_to_remove
• flat_set<public_key_type> key_approvals_to_add
• flat_set<public_key_type> key_approvals_to_remove

91 | P a g e

• extensions_type extensions

proposal_delete_operation

The proposal_delete_operation deletes an existing transaction proposal. This operation allows
the early veto of a proposed transaction. It may be used by any account which is a required
authority on the proposed transaction, when that account's holder feels the proposal is ill-
advised and he decides he will never approve of it and wishes to put an end to all discussion of
the issue. Because he is a required authority, he could simply refuse to add his approval, but
this would leave the topic open for debate until the proposal expires. Using this operation, he
can prevent any further breath from being wasted on such an absurd proposal.
Parameters

• account_id_type fee_paying_account
• bool using_owner_authority = false
• asset fee
• proposal_id_type proposal
• extensions_type extensions

withdraw_permission_create_operation

Create a new withdrawal permission. This operation creates a withdrawal permission, which
allows some authorized account to withdraw from an authorizing account. This operation is
primarily useful for scheduling recurring payments.
Withdrawal permissions define withdrawal periods, which is a span of time during which the
authorized account may make a withdrawal. Any number of withdrawals may be made so long
as the total amount withdrawn per period does not exceed the limit for any given period.
Withdrawal permissions authorize only a specific pairing, i.e. a permission only authorizes one
specified authorized account to withdraw from one specified authorizing account. Withdrawals
are limited and may not exceed the withdrawal limit. The withdrawal must be made in the same
asset as the limit; attempts with withdraw any other asset type will be rejected.
The fee for this operation is paid by withdraw_from_account, and this account is required to
authorize this operation.
Parameters

• asset fee
• account_id_type withdraw_from_account: The account authorizing withdrawals from its

balances
• account_id_type authorized_account: The account authorized to make withdrawals from

withdraw_from_account.
• asset withdrawal_limit: The maximum amount authorized_account is allowed to withdraw

in a given withdrawal period.
• uint32_t withdrawal_period_sec = 0: Length of the withdrawal period in seconds.
• uint32_t periods_until_expiration = 0: The number of withdrawal periods this permission

is valid for.
• time_point_sec period_start_time: Time at which the first withdrawal period begins; must

be in the future.

92 | P a g e

withdraw_permission_update_operation

Update an existing withdraw permission. This operation is used to update the settings for an
existing withdrawal permission. The accounts to withdraw to and from may never be updated.
The fields which may be updated are the withdrawal limit (both amount and asset type may be
updated), the withdrawal period length, the remaining number of periods until expiration, and the
starting time of the new period.
Fee is paid by withdraw_from_account, which is required to authorize this operation
Parameters

• asset fee
• account_id_type withdraw_from_account: This account pays the fee. Must match

permission_to_update->withdraw_from_account
• account_id_type authorized_account: The account authorized to make withdrawals.

Must match permission_to_update->authorized_account
• withdraw_permission_id_type permission_to_update: ID of the permission which is being

updated
• asset withdrawal_limit: New maximum amount the withdrawer is allowed to charge per

withdrawal period
• uint32_t withdrawal_period_sec = 0: New length of the period between withdrawals.
• time_point_sec period_start_time: New beginning of the next withdrawal period; must be

in the future
• uint32_t periods_until_expiration = 0: The new number of withdrawal periods for which

this permission will be valid

withdraw_permission_claim_operation

Withdraw from an account which has published a withdrawal permission. This operation is used
to withdraw from an account which has authorized such a withdrawal. It may be executed at
most once per withdrawal period for the given permission. On execution, amount_to_withdraw is
transferred from withdraw_from_account to withdraw_to_account, assuming
amount_to_withdraw is within the withdrawal limit. The withdrawal permission will be updated to
note that the withdrawal for the current period has occurred, and further withdrawals will not be
permitted until the next withdrawal period, assuming the permission has not expired. This
operation may be executed at any time within the current withdrawal period.
Fee is paid by withdraw_to_account, which is required to authorize this operation
Parameters

• asset fee: Paid by withdraw_to_account
• withdraw_permission_id_type withdraw_permission: ID of the permission authorizing this

withdrawal
• account_id_type withdraw_from_account: Must match withdraw_permission-

>withdraw_from_account
• account_id_type withdraw_to_account: Must match withdraw_permision-

>authorized_account
• asset amount_to_withdraw: Amount to withdraw. Must not exceed withdraw_permission-

>withdrawal_limit.
• optional<memo_data> memo: Memo for withdraw_from_account. Should generally be

encrypted with withdraw_from_account->memo_key.

93 | P a g e

withdraw_permission_delete_operation

Delete an existing withdrawal permission. This operation cancels a withdrawal permission, thus
preventing any future withdrawals using that permission. Fee is paid by withdraw_from_account,
which is required to authorize this operation
Parameters

• asset fee
• account_id_type withdraw_from_account: Must match withdrawal_permission-

>withdraw_from_account. This account pays the fee
• account_id_type authorized_account: The account previously authorized to make

withdrawals. Must match withdrawal_permission->authorized_account.

• withdraw_permission_id_type withdrawal_permission: ID of the permission to be

revoked

committee_member_create_operation

Create a committee_member object, as a bid to hold a committee_member seat on the network.
Accounts which wish to become committee_members may use this operation to create a
committee_member object which stakeholders may vote on to approve its position as a
committee_member.
Parameters

• asset fee
• account_id_type committee_member_account: The account which owns the

committee_member. This account pays the fee for this operation
• string url

committee_member_update_operation

Update a committee_member object. Currently the only field which can be updated is the url
field.
Parameters

• asset fee
• committee_member_id_type committee_member: The committee member to update
• account_id_type committee_member_account: The account which owns the

committee_member. This account pays the fee for this operation
• optional<string> new_url

committee_member_update_global_parameters_operation

Used by committee_members to update the global parameters of the blockchain. This operation
allows the committee_members to update the global parameters on the blockchain. These
control various tunable aspects of the chain, including block and maintenance intervals,
maximum data sizes, the fees charged by the network, etc.
This operation may only be used in a proposed transaction, and a proposed transaction which
contains this operation must have a review period specified in the current global parameters
before it may be accepted.
Parameters

94 | P a g e

• asset fee
• chain_parameters new_parameters

vesting_balance_create_operation

Create a vesting balance. The chain allows a user to create a vesting balance. Normally,
vesting balances are created automatically as part of cashback and worker operations. This
operation allows vesting balances to be created manually as well.
Manual creation of vesting balances can be used by a stakeholder to publicly demonstrate that
they are committed to the chain. It can also be used as a building block to create transactions
that function like public debt. Finally, it is useful for testing vesting balance functionality.
Returns
ID of newly created vesting_balance_object
Parameters

• asset fee
• account_id_type creator: Who provides funds initially
• account_id_type owner: Who is able to withdraw the balance
• asset amount
• vesting_policy_initializer policy

vesting_balance_withdraw_operation

Withdraw from a vesting balance. Withdrawal from a not-completely-mature vesting balance will
result in paying fees
Parameters

• asset fee
• vesting_balance_id_type vesting_balance
• account_id_type owner: Must be vesting_balance.owner
• asset amount

worker_create_operation

Create a new worker object
Parameters

• asset fee
• account_id_type owner
• time_point_sec work_begin_date
• time_point_sec work_end_date
• share_type daily_pay
• string name
• string url
• worker_initializer initializer: This should be set to the initializer appropriate for the type of

worker to be created

95 | P a g e

custom_operation

provides a generic way to add higher level protocols on top of witness consensus. There is no
validation for this operation other than that required auths are valid and a fee is paid that is
appropriate for the data contained.
Parameters

• asset fee
• account_id_type payer
• flat_set<account_id_type> required_auths
• uint16_t id = 0
• vector<char> data

assert_operation

assert that some conditions are true. This operation performs no changes to the database state,
but can but used to verify pre or post conditions for other operations.
Parameters

• asset fee
• account_id_type fee_paying_account
• vector<predicate> predicates
• flat_set<account_id_type> required_auths
• extensions_type extensions

balance_claim_operation

Claim a balance in a balanc_object. This operation is used to claim the balance in a given
balance_object. If the balance object contains a vesting balance, total_claimed must not exceed
balance_object::available at the time of evaluation. If the object contains a non-vesting balance,
total_claimed must be the full balance of the object.
Parameters

• asset fee
• account_id_type deposit_to_account
• balance_id_type balance_to_claim
• public_key_type balance_owner_key
• asset total_claimed

override_transfer_operation

Allows the issuer of an asset to transfer an asset from any account to any account if they have
override_authority.
Parameters

• asset fee
• account_id_type issuer
• account_id_type from: Account to transfer asset from
• account_id_type to: Account to transfer asset to
• asset amount: The amount of asset to transfer from from to to
• optional<memo_data> memo: User provided data encrypted to the memo key of the "to"

account

96 | P a g e

• extensions_type extensions
Precondition

• amount.asset_id->issuer == issuer
• issuer != from because this is pointless, use a normal transfer operation

transfer_to_blind_operation

Converts public account balance to a blinded or stealth balance.
Parameters

• asset fee
• asset amount
• account_id_type from
• blind_factor_type blinding_factor
• vector<blind_output> outputs

blind_transfer_operation

Transfers from blind to blind. There are two ways to transfer value while maintaining privacy:
• account to account with amount kept secret
• stealth transfers with amount sender/receiver kept secret

When doing account to account transfers, everyone with access to the memo key can see the
amounts, but they will not have access to the funds.
When using stealth transfers the same key is used for control and reading the memo.
This operation is more expensive than a normal transfer and has a fee proportional to the size
of the operation.
All assets in a blind transfer must be of the same type: fee.asset_id The fee_payer is the temp
account and can be funded from the blinded values.
Using this operation you can transfer from an account and/or blinded balances to an account
and/or blinded balances.
Stealth Transfers:
Assuming Receiver has key pair R,r and has shared public key R with Sender Assuming Sender
has key pair S,s Generate one time key pair O,o as s.child(nonce) where nonce can be inferred
from transaction Calculate secret V = o*R blinding_factor = sha256(V) memo is encrypted via
aes of V owner = R.child(sha256(blinding_factor))
Sender gives Receiver output ID to complete the payment.
This process can also be used to send money to a cold wallet without having to pre-register any
accounts.
Outputs are assigned the same IDs as the inputs until no more input IDs are available, in which
case a the return value will be the first ID allocated for an output. Additional output IDs are
allocated sequentially thereafter. If there are fewer outputs than inputs then the input IDs are
freed and never used again.
Parameters

• asset fee
• vector<blind_input> inputs
• vector<blind_output> outputs

97 | P a g e

transfer_from_blind_operation

Converts blinded/stealth balance to a public account balance.
Parameters

• asset fee
• asset amount
• account_id_type to
• blind_factor_type blinding_factor
• vector<blind_input> inputs

asset_claim_fees_operation

used to transfer accumulated fees back to the issuer's balance
Parameters

• asset fee
• account_id_type issuer
• asset amount_to_claim
• extensions_type extensions

Preconditions
• amount_to_claim.asset_id->issuer must == issuer

board_update_chain_authority_operation

Used by board members to update chain authorities. This operation allows the committee
members to update a chain authority in the global properties object on the blockchain. The kind
must match the number assigned to said authority. This operation may only be used in a
proposed transaction, and a proposed transaction which contains this operation must have a
review period specified in the current global parameters before it may be accepted.
Parameters

• asset fee
• string kind
• account_id_type account
• account_id_type committee_member_account

update_queue_parameters_operation

Parameters
• asset fee
• account_id_type issuer
• optional<bool> enable_dascoin_queue
• optional<uint32_t> reward_interval_time_seconds
• optional<share_type> dascoin_reward_amount
• extensions_type extensions

create_license_type_operation

Create a new type of license. Must be signed by the current license_administration authority.
Parameters

98 | P a g e

• asset fee
• account_id_type admin
• string name
• share_type amount
• string kind
• upgrade_multiplier_type balance_multipliers
• upgrade_multiplier_type requeue_multipliers
• upgrade_multiplier_type return_multipliers
• share_type eur_limit

issue_license_operation

Request a license to be granted an account. Grant a license to an account. This operation must
be signed by the current license_issuer authority.
Parameters

• asset fee
• account_id_type issuer
• account_id_type account
• license_type_id_type license
• share_type bonus_percentage
• frequency_type frequency_lock
• time_point_sec activated_at
• extensions_type extensions

tether_accounts_operation

tethers a vault and wallet account together.
Parameters

• asset fee
• account_id_type wallet_account
• account_id_type vault_account
• extensions_type extensions

asset_create_issue_request_operation

For dual authority issued assets, create an asset issue request that can be denied by the asset
authenticator. Note: You cannot use this operation on single issuer assets.
Parameters

• asset fee
• account_id_type issuer
• account_id_type receiver
• share_type amount
• asset_id_type asset_id
• share_type reserved_amount
• string unique_id
• string comment
• extensions_type extensions

99 | P a g e

asset_deny_issue_request_operation

As the asset authenticator on a dual authentication issuing asset, deny an asset issue request.
Parameters

• asset fee
• account_id_type authenticator
• issue_asset_request_id_type request
• extensions_type extensions

wire_out_operation

Parameters
• asset fee
• account_id_type account
• asset asset_to_wire
• string memo
• extensions_type extensions

wire_out_complete_operation

Parameters
• asset fee
• account_id_type wire_out_handler
• wire_out_holder_id_type holder_object_id
• extensions_type extensions

wire_out_reject_operation

Parameters
• asset fee
• account_id_type wire_out_handler
• wire_out_holder_id_type holder_object_id
• extensions_type extensions

transfer_vault_to_wallet_operation

Transfers assets from a tethered vault to its parent wallet, with limits enforced.
Parameters

• asset fee
• account_id_type from_vault
• account_id_type to_wallet
• asset asset_to_transfer
• share_type reserved_to_transfer
• extensions_type extensions

100 | P a g e

transfer_wallet_to_vault_operation

Transfers assets from a tethered vault to its parent wallet. NO LIMITS are enforced.
Parameters

• asset fee
• account_id_type from_wallet
• account_id_type to_vault
• asset asset_to_transfer
• share_type reserved_to_transfer
• extensions_type extensions

submit_reserve_cycles_to_queue_operation

Request to issue cycles to an account. An authorized cycle issuing authority can request to
issue a certain amount of cycles. An independent authorized cycle authentication authority must
inspect and approve this request.
Parameters

• asset fee
• account_id_type issuer
• account_id_type account
• share_type amount
• frequency_type frequency_lock
• string comment
• extensions_type extensions

submit_cycles_to_queue_operation

Submit cycles to the DasCoin distribution queue. A user can submit their cycles to the dascoin
distribution queue where they await to be minted.

• asset fee
• account_id_type account
• share_type amount
• frequency_type frequency
• string comment
• extensions_type extensions

change_public_keys_operation

Parameters
• asset fee
• account_id_type account
• optional<authority> active
• optional<authority> owner
• extensions_type extensions

101 | P a g e

update_global_frequency_operation

Parameters
• asset fee
• account_id_type authority
• frequency_type frequency
• string comment
• extensions_type extensions

issue_free_cycles_operation

Parameters
• asset fee
• account_id_type authority
• uint8_t origin
• account_id_type account
• share_type amount
• string comment
• extensions_type extensions

edit_license_type_operation

Parameters
• asset fee
• account_id_type authority
• license_type_id_type license_type
• optional<string> name
• optional<share_type> amount
• optional<share_type> eur_limit

update_euro_limit_operation

Allows the authority to disable or enable the euro limit to an account.
Parameters

• asset fee
• account_id_type authority
• account_id_type account
• bool disable_limit
• optional<share_type> eur_limit
• string comment
• extensions_type extensions

submit_cycles_to_queue_by_license_operation

Submit cycles by license to the DasCoin distribution queue. A user can submit their cycles to
the dascoin distribution queue where they await to be minted.
Parameters

• asset fee

102 | P a g e

• account_id_type account
• share_type amount
• license_type_id_type license_type
• frequency_type frequency_lock
• string comment
• extensions_type extensions

update_license_operation

Update a license issued to an account. Update a license issued to an account. This operation
must be signed by the current license_issuer authority.
Parameters

• asset fee
• account_id_type authority
• account_id_type account
• license_type_id_type license
• optional<share_type> bonus_percentage
• optional<frequency_type> frequency_lock
• optional<time_point_sec> activated_at
• extensions_type extensions

Issue_cycles_to_license_operation

Parameters
• asset fee
• account_id_type authority
• account_id_type account
• license_type_id_type license
• share_type amount
• string origin
• string comment
• extensions_type extensions

remove_root_authority_operation

Parameters
• asset fee
• account_id_type root_account: Root account whose authority we will revoke. This

account pays the fee for this operation.
• string comment

create_witness_operation

Parameters
• asset fee
• account_id_type authority: Root account authority. This account pays the fee for this

operation.

103 | P a g e

• account_id_type witness_account: Existing account that we want to promote into a
master node candidate.

• public_key_type block_signing_key: Public key that is used for signing blocks.
• string url
• string comment

update_witness_operation

Parameters
• asset fee
• witness_id_type witness
• account_id_type authority: Root account authority. This account pays the fee for this

operation
• optional<account_id_type> witness_account: Existing account that we want to promote

into a master node candidate.
• optional<public_key_type> block_signing_key: Public key that is used for signing blocks.
• optional<string> url
• optional<string> comment

remove_witness_operation

Parameters
• asset fee
• witness_id_type witness
• account_id_type authority: Root account authority. This account pays the fee for this

operation
• optional<string> comment

activate_witness_operation

Parameters
• asset fee
• witness_id_type witness
• account_id_type authority: Root account authority. This account pays the fee for this

operation
• optional<string> comment

deactivate_witness_operation

Parameters
• asset fee
• witness_id_type witness
• account_id_type authority: Root account authority. This account pays the fee for this

operation
• optional<string> comment

104 | P a g e

create_upgrade_event_operation

Parameters
• asset fee
• account_id_type upgrade_creator
• time_point_sec execution_time
• optional<time_point_sec> cutoff_time
• vector<time_point_sec> subsequent_execution_times
• string comment
• extensions_type extensions

update_upgrade_event_operation

Parameters
• asset fee
• account_id_type upgrade_creator
• upgrade_event_id_type upgrade_event_id
• optional<time_point_sec> execution_time
• optional<time_point_sec> cutoff_time
• optional<vector<time_point_sec>> subsequent_execution_times
• optional<string> comment
• extensions_type extensions

delete_upgrade_event_operation

Parameters
• asset fee
• account_id_type upgrade_creator
• upgrade_event_id_type upgrade_event_id
• extensions_type extensions

remove_vault_limit_operation

Allows the authority to remove limits on all vaults in system
Parameters

• asset fee
• account_id_type authority
• string comment
• extensions_type extensions

change_operation_fee_operation

Request to change fee for particular operation
Parameters

• asset fee
• account_id_type issuer
• uint64_t new_fee
• unsigned op_num

105 | P a g e

• string comment
• extensions_type extensions

change_fee_pool_account_operation

Request to change fee for particular operation
Parameters

• asset fee
• account_id_type issuer
• account_id_type fee_pool_account_id
• string comment
• extensions_type extensions

purchase_cycle_asset_operation

Parameters
• asset fee
• account_id_type wallet_id
• share_type amount
• frequency_type frequency
• share_type expected_amount
• extensions_type extensions

transfer_cycles_from_licence_to_wallet_operation

Parameters
• asset fee
• account_id_type vault_id
• license_type_id_type license_id
• share_type amount
• account_id_type wallet_id
• extensions_type extensions

wire_out_with_fee_operation

Parameters
• asset fee
• account_id_type account
• asset asset_to_wire
• string currency_of_choice
• string to_address
• string memo
• extensions_type extensions

106 | P a g e

wire_out_with_fee_complete_operation

Parameters
• asset fee
• account_id_type wire_out_handler
• wire_out_with_fee_holder_id_type holder_object_id
• extensions_type extensions

wire_out_with_fee_reject_operation

Parameters
• asset fee
• account_id_type wire_out_handler
• wire_out_with_fee_holder_id_type holder_object_id
• extensions_type extensions

set_starting_cycle_asset_amount_operation

Sets global value for starting amount of cycles on new accounts. Changes the value of global
property starting_cycle_asset_amount, that represents a number of cycles that is given to each
new wallet or custodian account.
Parameters

• asset fee
• account_id_type issuer: Operation issuer, must be root authority
• uint32_t new_amount = DASCOIN_DEFAULT_STARTING_CYCLE_ASSET_AMOUNT:

A value to set the amount to
• extensions_type extensions;

107 | P a g e

