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Abstract. Bitcoin and its underlying blockchain protocol have received
recently significant attention in the context of building distributed sys-
tems as well as from the perspective of the foundations of the consensus
problem. At the same time, the rapid development of quantum technolo-
gies brings the possibility of quantum computing devices from a the-
oretical concept to an emerging technology. Motivated by this, in this
work we revisit the formal security of the core of the Bitcoin protocol,
called the Bitcoin backbone, under the assumption that the adversary
has access to a scalable quantum computer. We prove that the proto-
col’s essential properties stand in the post-quantum setting assuming a
suitably bounded Quantum adversary in the Quantum Random Oracle
(QRO) model. Specifically, our results imply that security can be shown
by bounding the quantum queries so that each quantum query is worth
O(p−1/2) classical ones and that the wait time for safe settlement is ex-
panded by a multiplicative factor of O(p−1/6), where p is the probability
of success of a single classical query to the protocol’s underlying hash
function.

1 Introduction

Bitcoin [35] and its underlying blockchain protocol structure have received sub-
stantial attention in recent years both due to its potential for various applications
as well as due to the possibility of using it to solve fundamental distributed com-
puting questions in alternative and novel threat models. In [21], an abstraction
of Bitcoin’s underlying protocol, termed the “Bitcoin backbone” was presented
and analyzed assuming a fixed (albeit unknown) number of parties (“miners”), a
fraction of which may behave arbitrarily as controlled by an adversary. This was
followed by [36, 22, 6] who further refined the model and its security analysis.

At a high level, the protocol relies on a concept known as a proof of work
(PoW) [18], which, intuitively, enables a party to convince others that he has
invested some effort for solving a task—specifically, finding a value (“witness”)
such that a hash function (SHA-256) applied to that value together with (the
hash of) the last block and new transactions yields an output that is less than
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a certain target value. A party that is successful in producing a PoW gets to
add a new block to the blockchain (and is rewarded). In the abstraction, the
hash function is modelled as a random oracle (RO) [9], and it assumes a uniform
configuration, meaning that parties are endowed with the same computational
power, as measured by the allowed number of queries to the RO per round.

A number of desired properties for the blockchain thus constructed—namely,
common prefix and chain quality —were introduced and shown sufficient for the
realization of applications, notably a robust public transaction ledger (a.k.a.
“Nakamoto consensus”), assuming an honest majority of computational power
(or equivalently, in the uniform configuration setting mentioned above, that the
number of honest parties exceed the number of malicious ones).

The model of [21] as well as that in all subsequent papers [36, 22, 6] fol-
lows [24, 15], and as such parties are “classical” and modelled as polynomially
bounded Interactive Turing Machines (ITMs), and protocol properties such as
the ones above can be expressed as predicates over random variables quantifying
over all possible adversaries.

In summary, the above works put forth elegant modeling and analyses and
constitute an important step forward in our understanding of the capabilities of
this emerging technology, but quantum computing, which equips attackers with
unprecedented power and is changing the landscape of cryptography, “is coming”
with the known devastating consequences: Shor’s quantum algorithm [40] solves
factorization and discrete logarithm efficiently, and hence breaks popular public-
key cryptosystems based on them. The mere capability of collecting side infor-
mation in a quantum register sometimes compromises information-theoretically
secure schemes, such as randomness extractors for privacy amplification [23]. In
fact, the unique features of quantum information, such as intrinsic randomness
and no-cloning, render many classical security analysis obsolete (e.g., rewind-
ing [45, 47]), and even the right modeling of security in the presence of quantum
attacks can be elusive [46, 20, 42, 43, 26, 11, 2, 3].

A core ingredient of the Bitcoin blockchain is proofs of work (PoW) [17], and
the dynamic construction of a blockchain can be seen as sequential compositions
of it. The analysis relies critically on generic properties of cryptographic hash
functions, modeled as a random oracle (RO) [8] and only given oracle access.
When quantum attackers are present, Boneh et al. [10] argued the need for
granting the attackers querying the random oracle in quantum-superposition,
which gives the quantum random oracle (QRO) model.

Quantum superposition attacks also turn out to be devastating, even to
symmetric-key cryptosystems which are usually considered less vulnerable to
quantum attacks (for example, several practical authentication schemes using
block ciphers are broken in this strong attack model [30, 38]). Roughly speak-
ing, the PoW used in blockchain protocols corresponds to solving some search
problem by making quantum-superposition queries to a (random) hash function,
which at first sight is reminiscent to some standard problems studied in quantum
query complexity. However, existing results and techniques for proving quantum
query lower bounds do not immediately translate to the cryptographic setting.
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This is because in cryptography we are interested in average-case complexity
as opposed to the typical worst-case complexity; also, standard quantum query
lower bounds usually apply to quantum algorithms with high success probability
only, whereas an attacker with small but noticeable chance of breaking a scheme
is still relevant. In fact, an attacker may take advantage of some complicated
composition of PoWs, and as a result its query complexity seems to require
considerable extension of known techniques (such as composition theorems for
quantum query complexity [32]).

As an important first step in understanding Bitcoin’s vulnerabilities against
quantum attacks, Aggarwal et al. [1] investigated the quantum threats to Bitcoin,
taking into account detailed resource estimations (e.g., quantum error correction)
and the prospect of the physical implementation of quantum computers. They
asserted that the elliptic-curve-based signature scheme used in Bitcoin would be
completely broken by a quantum computer as early as 2027 and hence switching
to post-quantum signatures is critical. On the other hand, they observed that the
stand-alone search problem induced by PoW is relatively resistant to near-term
quantum computations due to their slow clock speed and large overhead of quan-
tum error correction. However, the security implications for the Bitcoin back-
bone are still not clear. Given the complex workings of a blockchain, quantum
attackers could employ sophisticated strategies beyond solving the stand-alone
search problem. Thus, a comprehensive analysis of the security of a PoW-based
blockchain against quantum attacks remains a pressing issue.

Our contributions. In this paper we analyze the Bitcoin backbone protocol [21]
under the assumption that the adversary has access to devices able to perform
universal quantum computing. As mentioned above, the two main properties that
are required in [21] are common prefix (honest parties always agree on truncated
local chains) and chain quality (expressing the ratio of honest/adversarial blocks
and guaranteeing that at least a certain fraction of the blocks are generated by
honest parties). As a result of our analysis, we are able to ensure that the com-
mon prefix and chain quality properties can still be satisfied against quantum
attackers, provided some bounds on the quantum computational hashing power
hold. The “honest majority” condition1 we get is that the total number of quan-
tum queries Q of the attacker has to be less than the total number of classical
queries of all the honest parties divided by an extra O(p−1/2) factor, where p is
the probability of success of a single query and, informally, represents the diffi-
culty level of the PoW. This extra factor is the main difference from the classical
analysis and is due to the quadratic quantum speed-up of (generalized) search
algorithms. Moreover, the common prefix and chain quality properties hold ex-
cept with negligible probability, and this negligible probability is achieved after
a number of rounds s. Our analysis indicates that to achieve the same negligible
probability against a quantum attacker, the new required number of rounds sq
is the same with the classical s multiplied by an extra O(p−1/6) factor. This has

1 Necessary (and sufficient) for the properties to be satisfied in [21]’s uniform config-
uration with respect to hashing power.
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the implication that the number of “block confirmations” necessary for a trans-
action to be accepted has to be increased accordingly for post-quantum security
in order to protect against double-spending based on our results.

Having proven that the common prefix and chain quality properties hold
against quantum attackers, we can build applications (such as consensus [a.k.a.
Byzantine agreement [31]] and a public transaction ledger [i.e., Bitcoin]) as ex-
actly shown in [21]. Now, these applications require digital signatures and it is
well known that a quantum attacker can compromise some of the digital signa-
ture schemes (including ECDSA, used in Bitcoin). Therefore, in order for our
analysis of the Bitcoin backbone protocol to carry over to the above applications
we need to ensure that a post-quantum secure digital signature scheme is used
(see also [1] where different post-quantum signature schemes were compared for
their suitability for Bitcoin).

To summarize, our contributions are as follows:

We model the quantum attackers in the context of the backbone protocol.

We extract from [21] sufficient conditions imposed on the number of PoWs
an adversary can solve within s rounds in order for the common prefix and
chain quality properties to hold.

Using our model we are able to obtain bounds on the expected number of
PoWs within s rounds that any quantum adversary can achieve. This is then
used to get an “honest majority” condition.

We derive new concentration theorems (extending Chernoff bound and prov-
ing a generalised version of Azuma’s inequality). These results are of inde-
pendent interest.

Finally, using (old and new) concentration results applied to our model for
quantum attackers, we complete the analysis of the Bitcoin backbone proto-
col by giving a tight characterization of the overwhelming probabilities that
the properties hold with.

Overview of our results. In our setting (see Section 2 for more details) we model
the computational power of honest parties as a number of q queries per party to a
random oracle (RO). In the classical setting, the adversary is assumed to benefit
from the joint computational effort of the parties under his control. Accordingly,
and to simplify the analysis we assume that there is a single quantum adver-
sary with a total computational power of Q queries per round—to a Quantum
Random Oracle (QRO) [10].

In Section 3 we extract from the original reference the quantities and con-
straints, between variables of the honest parties and adversaries, that are suffi-
cient to ensure the common prefix and chain quality properties. Since we assume
that honest parties do not have quantum computing power, all the analysis in-
volving the variables of honest parties remains unchanged from [21]. Thus, the
main quantity of interest is the variables of the adversaries, i.e, the number of
blocks that the quantum adversary can achieve within a certain number s of
rounds. Solving a PoW is modeled as a quantum search problem, where the
role of the Grover Oracle is played by the QRO. In other words, the adversary
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prepares an equal superposition and then using the QRO and quantum-search
type algorithm, amplifies the probability of finding a PoW. To actually solve one
such PoW, the adversary needs to perform a measurement, and by doing this he
either solves the PoW or has now destroyed the amplification of the probability
and needs to start from scratch. The probability of succeeding in such a process
is bounded by known bounds on quantum search algorithms.

Importantly, the quantum adversary is allowed to use the quantum queries
of a round trying to solve a specific PoW but instead of measuring at the end
of the round he can carry over the output quantum state to the next round and
continue trying to solve the same problem. This is not the same as transferring
his quantum queries to the next round, since the problem (and instance of the
QRO) trying to solve was defined in the first round. On the other hand, the
fact that the adversary receives in the next round a state that somehow has
information about the problem one tries to solve, differs from the classical case,
where each query (and thus different rounds) is completely independent from the
previous. Unlike the classical case, where one can perform one query after another
and every time check if the query solved a PoW, to get a Grover-type speed-
up the quantum adversary needs to apply the QRO queries on top of previous
queries without making a measurement. Therefore, the main free choice that the
quantum adversary has, is to decide when each quantum measurement is made.
For each such measurement, the adversary can solve at most a single PoW. We
divide the analysis we perform into three steps, as follows.

1. Honest majority. By analyzing the maximum expected blocks that the
quantum adversary can achieve, we are able to determine a relation be-
tween the honest hashing power (classical queries per round) and the max-
imum adversarial quantum hashing power (quantum queries per round).
Akin to the classical setting, this sets an “honest majority” condition that
is essential for the protocol to be secure.

2. Concentration results. In order to see how quickly the desired properties
are satisfied, on top of bounding the average number of adversary’s blocks,
we need to also bound the tails of the corresponding distribution. This will
tell us how long we need to wait (protocol rounds) to know that the average
advantage of the honest parties translates to an actual longer chain with
probability as high as requested by the security level.

3. Bitcoin backbone properties. Combining the results from [21] for the hon-
est parties with our results for the quantum adversary and using the new
conditions derived in Section 3, we obtain the conditions and parameters
under which the main backbone protocol properties hold.

To perform this analysis for the most general adversary of our model we first
consider two restricted classes. The first class, that is also physically motivated,
is the “noisy quantum storage” where the adversary while he has a quantum
computer, the quantum memory of the device is imperfect (noisy) and therefore
has to make a measurement at the end of the round, since he cannot carry over
the quantum state to the next round. On top of the physical motivation, the
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techniques used to prove the honest majority and concentration results are very
similar with the ones used for stronger adversaries and thus it is instructive to
examine this early. The second class is the “non-adaptive” where the adversary
has quantum memory (can transfer quantum states from round to round) but
needs to decide when he will perform measurements independently of the pre-
vious measurement outcomes. Again the motivation for looking this class comes
from the use of the techniques (and some results) for the analysis of the most
general case. For each class we go through all the three steps given above.

Noisy quantum storage. The adversary gets a quadratic speed-up per round Q ≤
O(
√
qn) and no further advantage. With a suitable limit on the quantum hashing

power, the probability for solving a PoW within one round is smaller than that
of honest parties and since they cannot transfer quantum states between rounds,
the classical analysis carries over (different rounds can be treated as independent
variables).

Non-adaptive adversary. We prove here that as far as the expected number of
blocks are concerned, non-adaptive adversaries are optimal. This illustrates the
importance of this class, since the maximum expected value (and thus the “hon-
est majority” condition) for the general adversary coincides with that of the
Non-adaptive. Specifically, the best strategy is to use queries from multiple
rounds such that they are deterministically certain that they can obtain a PoW.
This happens for Kmax = O(p−1/2) queries, and thus the honest majority is
Q = O(qnp1/2) i.e. has an extra factor of p1/2. Again, by imposing a constraint
on the quantum hashing power, one can satisfy the requirements for the Bit-
coin backbone protocol. To bound the tails of the distributions we note that the
corresponding random variables are independent, something that is guaranteed
because of the non-adaptive nature of this type of adversary, and leads to good
concentration results using a refined version of Chernoff’s inequality.

Finally, we consider the most general type of quantum adversary in our
model, where the choice to perform a measurement can be made adaptively.

General adversary. The “honest majority” condition is the same as in the non-
adaptive case as stated above. Bounding the tails of the distribution, however,
turns out to be challenging, as existing concentration theorems (cf. [5], [39])
applied to our case give very weak bounds. For this reason, we formulate and
prove a new concentration theorem for non-independent variables that is specif-
ically suited for our case. This might be of independent interest, and uses the
variances of the individual (non-independent) variables corresponding to differ-
ent measurements. The fact that the adversary is quantum is used to bound
the number of those variables that have variance above a threshold. Applied to
the Bitcoin backbone setting, we are able to obtain a concentration result that
scales considerably better (having a factor of ∼ p1/6 in the exponential decay,
compared to the ∼ p1/2 given by the original Azuma inequality).

Other related works. On top of the challenges against superposition attacks,
quantum random oracle model has proven arduous to deal with. Many proof tech-
niques in classical RO become ill-formed in QRO. Thankfully, many have been

6



salvaged (at least partially) in QRO over the years. We can simulate a quantum
random oracle [49, 51, 41], program it under a variety of circumstances [19, 44],
establish generic security of hash functions [29, 7, 27, 33], and even paradoxi-
cally record quantum queries by Zhandry’s recent work [52]. These developments
enable proving quantum security of many cryptographic schemes in QRO, such
as CCA-secure public-key encryption and the general Fiat-Shamir approach to
construting digital signatures [28, 37, 4, 34, 16].

Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2 we present our model and in Section 3 we extract the essential results from
[21] reducing the security analysis of the Bitcoin backbone protocol to a number
of conditions that the (quantum) adversaries power should satisfy. In Section 4
we analyze the simplest adversarial model, where the attacker has noisy quan-
tum memory. In Section 5 we proceed with analyzing non-adaptive adversaries,
where we first prove that expectation-wise these adversaries are optimal (and
thus they give the same “honest majority” bound as general adversaries), and
then perform the backbone analysis by also obtaining the bounds on the tails. In
Section 6 we turn to the most general (in our model) adversary that is allowed
to make adaptive measurements. To bound the tails of the distribution we need
to model the variables using martingales and derive new concentration inequal-
ities. We conclude in Section 7 with a comparison of our results for the different
adversaries and with the classical Bitcoin backbone protocol, as well as giving
future directions.

2 Model and Definitions

We will analyze our post-quantum version of the Bitcoin backbone protocol in
the network model considered in [21], namely, a synchronous communication
network which is based on Canetti’s formulation of “real world” execution for
multi-party cryptographic protocols [13, 14]). As such, the protocol execution
proceeds in rounds with inputs provided by an environment program denoted
by Z to parties that execute the protocol. The execution is assumed to have a
polynomial time bound. Message delivery is provided by a “diffusion” mechanism
that is guaranteed to deliver all messages, without however preserving their order
and allowing the adversary to arbitrarily inject its own messages. Importantly,
the parties are not guaranteed to have the same view of the messages delivered
in each round, except for the fact that all honest messages from the previous
round are delivered. Furthermore, we have a single adversary, which has quantum
computing power and is formally defined later and is allowed to change the source
information on every message (i.e., communication is not authenticated).

The Bitcoin backbone protocol. First, we introduce some blockchain notation, fol-
lowing [21]. A block is any triple of the form B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈
{0, 1}∗, ctr ∈ N are such that satisfy predicate validblockDq (B) defined as

(H(ctr,G(s, x)) < D) ∧ (ctr ≤ q), (2.1)
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where H,G are cryptographic hash functions (e.g., SHA-256) modelled as ran-
dom oracles. The parameter D ∈ N is also called the block’s difficulty level. We
then define p = D/2κ to be the probability that a single classical query solves a
PoW. The parameter q ∈ N is a bound that in the Bitcoin implementation deter-
mines the size of the register ctr; in our treatment we allow this to be arbitrary,
and use it to denote the maximum allowed number of hash queries performed
by the (classical) parties in a round.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block
is the head of the chain, denoted head(C). Note that the empty string ε is also a
chain; by convention we set head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉
can be extended to a longer chain by appending a valid block B = 〈s, x, ctr〉
that satisfies s = H(ctr′, G(s′, x′)). In case C = ε, by convention any valid
block of the form 〈s, x, ctr〉 may extend it. In either case we have an extended
chain Cnew = CB that satisfies head(Cnew) = B. Consider a chain C of length
m (written as len(C) = m) and any nonnegative integer k. We denote by Cdk
the chain resulting from the “pruning” of the k rightmost blocks. Note that for
k ≥ len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

The Bitcoin backbone protocol is executed by an arbitrary number of parties
over an unauthenticated network, as described above. It is assumed in [21] that
the number of parties running the protocol is fixed however, parties need not be
aware of this number when they execute the protocol. In our analysis we will
have n honest parties and a single quantum adversary. Also as mentioned above,
communication over the network is achieved by utilizing a send-to-all Diffuse
functionality that is available to all parties (and may be abused by the adversary
in the sense of delivering different messages to different parties).

Each party maintains a blockchain, as defined above, starting from the empty
chain and mining a block that contains the value s = 0 (by convention this is the
“genesis block”). If in a given round, a party is successful in generating a PoW
(i.e., satisfying conjunction 2.1), it diffuses it to the network. At each round, each
party chooses the longest chain amongst the one he has received, and tries to
extend it by computing (mining) another block. In such a process, each party’s
chain may be different, but under certain well-defined conditions, it is shown
in [21] that the chains of honest parties will share a large common prefix (see
below).

In the backbone protocol, the type of values that parties try to insert in
the chain is intentionally left unspecified, as well as the type of chain valida-
tion they perform (beyond checking for its structural properties with respect to
the hash functions G(·), H(·)), and the way they interpret the chain. Instead,
these actions are abstracted by the external functions V (·) (the content val-
idation predicate), I(·) (the input contribution function), and R(·) (the chain
reading function), which are specified by the application that runs “on top” of
the backbone protocol (e.g., a transaction ledger).

Basic security properties of the blockchain. It is shown in [21] that the blockchain
data structure built by the Bitcoin backbone protocol satisfies a number of basic
properties. At a high level, the first property, called common prefix, has to do
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with the existence, as well as persistence in time, of a common prefix of blocks
among the chains of honest parties.

Definition 1 (Common Prefix). The common prefix property with parameter
k ∈ N, states that for any pair of honest players P1, P2 adopting chains C1, C2
at rounds r1 ≤ r2, it holds that Ck1 � C2 (the chain resulting from pruning the k
rightmost blocks of C1 is a prefix of C2).

The next property relates to the proportion of honest blocks in any portion
of some honest partys chain.

Definition 2 (Chain Quality). The chain quality property with parameters
µ ∈ R and l ∈ N, states that for any honest party P with chain C, it holds that
for any l consecutive blocks of C, the ratio of blocks created by honest players is
at least µ.

Relevant random variables. Following [21], we use the following two random
variables: Xi: if at round i an honest party obtains a PoW, then Xi = 1, oth-
erwise Xi = 0; Yi: if at round i exactly an honest party obtains a POW, then
Yi = 1, otherwise Yi = 0. For a set of consecutive rounds S of size s, we denote
X(s) =

∑
i∈S Xi, Y (s) =

∑
i∈S Yi. Additionally, we denote by Z(s) the number

of PoWs obtained by a (quantum in our case) adversary within s consecutive
rounds. The security of the Bitcoin backbone protocol can be reduced to certain
relations among these variables (see Section 3).

We let f = E[Xi], a parameter with respect to which all the other quantities
are expressed (in the Bitcoin system, f is about 2 − 3%) and ε denote the
quality of concentration of random variables. We require 3(f + ε) < 1, implying
that f, ε < 1

3 . Following [21], we have the following bounds on these quantities:

(1− f)pqn < f < pqn and E[Yi] = pqn · (1− p)q(n−1) > pqn(1− pqn) ≥ f(1− f).
Which then give us the following concentration results for the random variables
X(s) and Y (s):

Lemma 1 ([21]). For any s ≥ 2/f rounds, we have that with probability 1 −
e−Ω(ε2sf), the following hold:

(1− ε)fs < X(s) < (1 + ε)fs

(1− ε)E[Y (s)] < Y (s)

(1− ε)f(1− f)s < Y (s)

(2.2)

The quantum adversary model. We will assume that the quantum adversary has
a number Q of quantum queries to H per round. The adversary can access the
cryptographic hash functions in a general quantum state (superposition) and
receive the corresponding quantum output. This is modeled with Q queries per
round to a Quantum Random Oracle (QRO) [10]. As in the classical case, the
adversary cannot carry over the queries to a different round (attempting to solve
a block at a later stage with more queries). What the adversary can do though is
to transfer a quantum state that is the output of queries to the QRO of one round,
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to the next round. This possibility, on the one hand, enables the adversary to
continue amplifying his probability of success (with the corresponding quantum
speed-up) for more queries than those within one round. On the other hand, the
transfer of quantum states makes the analysis more complicated since we can no
longer assume that queries in different rounds are independent.

Further, for a quantum adversary even to define a classical random variable
(such as Z(s)) is not straightforward, since strictly speaking we can do this only
once a measurement is performed. In other words, the quantum state received
from the QRO after one query does not give any classical information unless a
measurement is performed. In the general case the QRO is used to amplify the
probability, multiple queries are used before a single measurement is performed,
making hard to even know the number of classical random variables.

We will call the most general type of quantum adversaries we will consider
Time Measurement Strategies. This family captures the fact that the adversary
during a fixed number of rounds s, has a total fixed number of N queries to
the QRO, and his strategy is determined by the way he decides to use these
queries. This means that the main degree of freedom he has is the number of
quantum queries he makes before each quantum measurement he performs. More
specifically, given that in order to create a new block, the adversary needs to
solve a PoW (which corresponds to a search problem) and given the optimal-
ity of Grover’s search algorithm [48], the question becomes how many Grover
iterations (queries) he wants to make to amplify his probability of solving the
PoW, before performing a measurement and starting over again—either trying
to create the next block if he was successful or trying to solve again the same
PoW. While we can define random variables when measurements happen, for
notational simplicity we assume that there are N variables, where the variables
that do not really correspond to measurements will be treated as variables with
0 probability of success, using 0 queries.

En route to the general quantum adversary analysis, we will analyze two re-
stricted classes of adversaries, starting with the noisy quantum storage model Sec-
tion 4, where the adversary’s quantum memory degrades with time and after a
fixed amount of time it needs to be reset. We model this degrading effect with
enforcing the adversary to perform a measurement at the end of each round
(forbidding the adversary from transferring quantum states from one round to
the other). Second is the non-adaptive quantum adversary, where the adversary
can carry over quantum states, but the decision of how many queries to use be-
fore each measurement is independent from his previous measurement outcomes.
This model simplifies the analysis resulting to independent variables, and still
give us relevant results for general adversaries.

We define N = sQ to be the total number of queries to the QRO in s rounds;
Ki the number of queries to the QRO used for the ith measurement (i.e. the
quantum state measured in the ith round has passed Ki-times from the QRO);
PKi the corresponding probability of success of the ith measurement, and wi the
ith measurement outcome (1 if a block is created, 0 otherwise).
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Randomized quantum search. Our analysis relies on a tight quantum query
bound for solving a randomized search problem.

Theorem 1 ([29]). Let f : {0, 1}κ → {0, 1} be a function such that for any
x ∈ {0, 1}κ, f(x) = 1 with probability λ. Then, for any quantum algorithm A,
the probability to find a solution for f using q quantum queries is upper bounded
by:

Prf [f(x) = 1 |x← Af ()] ≤ 8λ(q + 1)2 (2.3)

This bound is tight due to Grover’s quantum search algorithm.

Theorem 2 ([25, 12]). Let f : X → {0, 1} be an oracle function and let Xf =
{x ∈ X : f(x) = 1}. Then there is a quantum algorithm with q queries that finds

an x ∈ Xf with success probability Ω(q2 |Xf |
|X | ).

In our analysis, we assume that the optimal success probability to solve a
PoW using K queries to the QRO is determined by the expression:

PK = cpK2, where c is a constant. (2.4)

Concentration bounds. Our analysis also uses (and extends) some standard con-
centration results, which can be found in Appendix A.

3 The Backbone Protocol Properties, Revisited

To ensure the two main properties common prefix and chain quality hold as in
the as in the classical adversary scenario [21], we need to satisfy two conditions.
In [21] these conditions are referred to as requirements of a “typical execution”.
The first condition requires that some events regarding the hash function H oc-
cur with exponentially small probability. Specifically, these events are defined as
follows: An insertion occurs when, given a chain C with two consecutive blocks B
and B′, a block B∗ created after B′ is such that B, B∗, B′ form three consecutive
blocks of a valid chain. A copy occurs if the same block exists in two different
positions. A prediction occurs when a block extends one which was computed at
a later round.
As proven in [21] (Theorem 10), these events imply finding a collision for the
hash function H. However, for the collision finding problem, it is known that the
best quantum algorithms require O(2

κ
3 ) queries (which is optimal as proven in

[50]) compared to the O(2
κ
2 ) in the classical case. Therefore, the same analysis

showing that these events hold with negligible probability in the quantum ad-
versaries case is sufficient.

The second condition refers to bounding the number of adversarial PoWs
within a number s of consecutive rounds. More specifically, to ensure that the
common prefix property holds with the same parameter as in the classical ad-
versary scenario, [21], for any type of adversary, it is sufficient to impose two
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restrictions on Z(s): with respect to X(s) and Y (s), respectively. These restric-
tions, will then imply upper bounds on the quantum adversarial hasing power
Q, which in turn will also give us the parameter of the chain quality property.

From now on in this section and in the remaining of the paper, as for the first
condition, the probabilities of the H-related events is negligible in the security
parameter κ, we will focus only on the probabilities for which the number of
adversarial blocks Z(s) is bounded, and will denote these latter probabilities
as the ones under which the security (the two main properties) of the Bitcoin
backbone protocol hold.

Lemma 2. The common prefix property of the Bitcoin backbone protocol holds
with parameter k ≥ 2sf , for any s ≥ 2

f consecutive rounds, against any quantum
adversary A if the following condition holds:

ZA(s)

s
< (1− ε)f(1− f) (3.1)

Proof. Following exactly the lines of the proofs from [21], we must first ensure
that: any k ≥ 2fs ≥ 4 consecutive blocks of a chain have been computed in
s ≥ k

2f consecutive rounds.

Which by following the proof by contradiction of Lemma 13 ([21]), imposes the
condition: For any quantum adversary A and for any s ≥ 2

f , we have:

X(s) + ZA(s) < 2fs (3.2)

Secondly, the condition between ZA(s) and Y (s) comes from the proof of the
following result, which then implies the common prefix property:

Lemma 3 (GKL15). Consider two chains C1 and C2. If C1 is adopted by an
honest player at round r and C2 is either adopted by an honest party at round r

or diffused at round r and has len(C2) ≥ len(C1), then Cdk1 � C2 and Cdk2 � C1
for k ≥ 2fs and s ≥ 2

f .

For the proof of this lemma, what we must guarantee is that for any quantum
adversary A and for s ≥ 2

f , we have: ZA(s) < Y (s). Therefore, in order to prove
that the common prefix property holds with parameter k ≥ 2sf , it is sufficient
to impose on the quantum adversary the following two conditions for any s ≥ 2

f
consecutive rounds:

X(s) + Z(s) < 2fs ; Z(s) < Y (s) (3.3)

Which using the bounds on the honest players variables X(s) and Y (s) from
Lemma 1, the sufficient conditions become:

Z(s)

s
< (1− ε)f ;

Z(s)

s
< (1− ε)f(1− f) (3.4)

Which given that min{(1− ε)f(1− f), (1− ε)f} = (1− ε)f(1− f) leads to:

Z(s)

s
< (1− ε)f(1− f) (3.5)
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Lemma 4. The chain quality property of the Bitcoin backbone protocol holds
with parameter l ≥ 2sf and ratio of honest blocks µ, where µ is determined by
the condition:

Z(s) < (1− µ)X(s) (3.6)

Proof. Follows directly from the proof of chain quality in Theorem 16 ([21]).

Moreover, if we ensure µ > 0, then this proves that for any s ≥ 2
f :

Corollary 1. Any 2sf consecutive blocks in the chain of an honest party contain
at least one honest block.

Crucially, besides obtaining restrictions on Q, depending on the type of the
adversary, we must specify with what probability the common prefix property
holds, which is the reason to seek the tightest concentration result possible.

4 Noisy Quantum Storage Adversaries

In the noisy quantum storage model the adversary’s quantum memory is degrad-
ing in time and after a fixed amount of time needs to be reset. This constrained
model implies that the adversary cannot continue the Grover iterations as long
as it wants, and instead it is forced to make a measurement at the end of each
round. We will denote this adversary as Anoisy.

4.1 Maximum Expectation of Noisy Quantum Storage Strategies

Theorem 3. For any Noisy Quantum Storage adversary Anoisy, the maximum
expected number of POWs, given any number of rounds s, is:

B := maxE[ZAnoisy
(s)] = cpsQ2 (4.1)

Proof. We start with a simplifying scenario, where we assume that Anoisy per-
forms a single measurement per round (at the end of the round). Using Theo-
rem 2, the expected number of adversarial blocks created in any round i (prob-
ability that the single PoW is solved) can be bounded by E[ZAnoisy

] ≤ cpQ2. In
this model we can compute E[ZAnoisy(s)] for a number of rounds s as:

E[ZAnoisy
(s)] =

s∑
i=1

E[ZAnoisy
] = s · E[ZAnoisy

] ≤ cpsQ2 (4.2)

However, while the adversary because of the noisy memory, is obliged to make
a measurement at the end of each round, within a round he could decide to
split the Q queries he has into multiple measurements, either attempting to
solve multiple different PoWs (to, in principle, extend his chain by more than
one block) or he may wish to try solving the same PoW (if he fails in earlier
attempts). We generalize, and consider that Anoisy can perform in each round a
variable number of measurements t, and for each measurement uses Ki queries
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before performing the corresponding measurement (
∑t
i=1Ki = Q). We can make

the convention that the number of measurements is t = Q, where since there
are Q queries in total, t = Q is the maximum possible within a round, and we
can always consider that the last chunk sizes are 0 (e.g. if adversary performs
m1 < Q measurements, we will have Km2

= 0 ∀ m2 > m1).
We can assume that the adversary, in the first measurement, is trying to solve

one particular PoW (either to extend a previously generated adversarial chain, or
starting from one existing honest chain). If successful, the second measurement
tries to build a block solving a new PoW that extends the chain of which block he
just generated. If he was unsuccessful, the adversary in his second measurement,
tries to solve again the same problem.

Then, if we denote by PAnoisy
(i) the probability of obtaining i PoWs (out of

Q possible PoWs), the expected number of adversarial blocks obtained by Anoisy

in any round i, can be described as:

E[ZAnoisy ] =

Q∑
i=1

i · PAnoisy(i) =

Q∑
i=1

i ·

 ∑
I⊆{1,2,...,Q}
|I|=i

∏
j∈I

cp ·K2
j

 ·
 ∏
l∈{1,··· ,Q}−I

(
1− cp ·K2

l

)


(4.3)
However, we notice that ZAnoisy

is defined as the number of successes in a se-
quence of Q independent measurements with outcome success or failure, each of
the measurements having success probability PK1 , PK2 , · · · , PKQ , then ZAnoisy

is a Poisson Binomial distribution. Therefore, as ZAnoisy
is a Poisson Binomial

distribution, its mean is equal to the sum of the Q Bernoulli distributions:

E[ZAnoisy
] =

Q∑
i=1

PKi = cp ·
Q∑
i=1

K2
i (4.4)

Then, we need to find the maximum of E[ZAnoisy ] over all possible K1, ...,KQ ∈
{0, 1, · · · , Q} subject to the constraint

∑Q
i=1Ki = Q. As each Ki ≤ Q, we

can rewrite the chunk sizes as: Ki = χiQ, where χi ∈ [0, 1]. The constraint∑Q
i=1Ki = Q becomes

∑Q
i=1 χi = 1. The expectation value can be rewritten as:

E[ZAnoisy ] = cpQ2 ·
Q∑
i=1

χ2
i (4.5)

Since χi ∈ [0, 1], we have χ2
i ≤ χi, which leads to:

E[ZAnoisy
] = cpQ2 ·

Q∑
i=1

χ2
i ≤ cpQ2 ·

Q∑
i=1

χi = cpQ2 (4.6)

Therefore, we have determined that the maximum value on the expected number
of blocks obtained by Anoisy is

maxE[ZAnoisy
] = cpQ2 = B. (4.7)
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We can also observe that this maximum value is obtained when the adversary
uses a single measurement with all Q queries: K1 = Q, Ki = 0 ∀ i 6= 1 since
E[ZAnoisy ] = cp(Q2 + 0 + · · ·+ 0) = cpQ2 = B. This indicates, that it is optimal
(w.r.t. the average number of adversarial blocks) for Anoisy to perform a single
measurement (with Q queries) per round.

4.2 Concentration Result of Noisy Quantum Storage Adversaries

To complete the analysis, it is not sufficient to know what is the maximum blocks
the adversary achieves on average, but we also need to know how concentrated
around this average value are the actual measured adversarial blocks. In this
first simplified analysis, since the best expectation is achieved with a single
measurement, we assume that the adversary sticks with this and makes a single
measurement in each round. The full case (where neither the quantum memory
has limitations nor we make this restriction on the number of measurements)
will be dealt afterwards in Section 6.

With these assumptions, for Anoisy adversary, it is not hard to obtain a con-
centration result, since Zi’s, corresponding to different rounds, are independent
random variables. Since Z(s) =

∑s
i=1 Zi, we could apply either Chernoff or Ho-

effding inequalities, however the former cannot be directly applied since we can
only bound the maximum expectation of ZAnoisy

(s), while the former gives a
very weak bound (see the problem with Azuma inequality in Section 6).

Instead, we derive our own bound on the probability of ZAnoisy
(s) that in-

volves the value B (and not E[ZAnoisy
(s)]). This newly derived Chernoff-type of

inequality, proved in Appendix B, is stated as below:

Lemma 5. Let X1, · · · Xn be n independent random variables, taking values 0
or 1. Let X = X1 + · · · + Xn. Then, for any M > 0, such that E[X] ≤ M and
for any ε > 0, we have:

Pr[X > (1 + ε)M ] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)

(4.8)

In our setting, we use n = s, Xi = wi (where wi = 1 if i-th measurement
succeeded, and 0 otherwise), X = ZAnoisy

(s), M = B. Hence, we obtain:

Pr[ZAnoisy
(s) > (1 + ε)B] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·B
)
∀ ε > 0 (4.9)

Combining this concentration result together with Theorem 3, gives us the
following bound on the number of adversarial POWs:

Theorem 4. For any Noisy Quantum Storage adversary Anoisy, with probability

1− exp(− ε(3ε+2)
2(2+ε) cpQ

2s) and for any ε > 0, it holds that:

ZAnoisy
(s) < (1 + ε)cpQ2s (4.10)
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4.3 Backbone Protocol Analysis for Noisy Quantum Storage

As explained in Section 3, we now need to determine the conditions on the
hashing power of the adversary such that the properties of the Bitcoin backbone
protocol are satisfied.

Theorem 5. The common prefix property is satisfied with parameter k ≥ 2sf ,
for any s ≥ 2

f consecutive rounds against any Noisy Quantum Storage Adversary,

with probability 1− exp(−g0(ε)cpQ2s), as long as:

Q <

√
1− ε
1 + ε

· f(1− f)

cp
(4.11)

Proof. Using Lemma 2 and the concentration result from Theorem 4, the con-
dition of the adversary’s hashing power Q becomes:

(1 + ε)cpQ2 < (1− ε)f(1− f) (4.12)

The proof follows from Eq. (4.12) and Theorem 4, where g0(ε) := ε(3ε+2)
2(2+ε) .

Theorem 6. The chain quality property is satisfied with parameter l ≥ 2sf , and
µ = f for any s ≥ 2

f consecutive rounds against any Noisy Quantum Storage

Adversary, with probability 1− exp(−g0(ε)cpQ2s).

Corollary 2. Under the above restrictions on Q, the probability under which
the common prefix and chain quality are satisfied becomes:

Pnoisy = 1− exp(−g1(ε) · f(1− f) · s) (4.13)

where g1(ε) = g0(ε) · 1−ε
1+ε .

5 Non-Adaptive Adversaries

The most general adversaries we consider (see next section) allow for the adver-
sary to decide how many queries he uses trying to break one particular PoW
depending on how successful he was in his previous attempts to break a PoW
(previous quantum searches). This “adaptivity” makes the analysis considerably
more complicated. A much simpler scenario, which we call “non-adaptive”, oc-
curs when the adversary does not take into account the history of successes,
meaning that the number of queries Ki used before each measurement, are inde-
pendent of the previous measurement outcomes. Therefore, we can assume that
the adversary decides in advance how to split his N total queries, before the s
rounds start.

In the Bitcoin backbone protocol, the relevant figure that an adversary wants
to optimise is the length of sequence of PoWs. Interestingly, these restricted non-
adaptive strategies, can achieve the best (longer) sequences of PoWs on average,
as we prove below.
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This is by no means sufficient to complete the analysis. The most general
(adaptive) adversaries, while they cannot beat this expectation value, they may
be able to have higher probabilities in the “tails” of the distributions (see next
section) and more generally one cannot use Chernoff inequalities to bound the
general adversary’s tails when the variables are dependent. However, given The-
orem 7 we will now focus on the non-adaptive case in order to provide a bound on
the expectation value of the most general adversaries. In the following sections,
we will denote this family of strategies by Anonad.

5.1 Non-Adaptive Expectation Optimal Among All Adversaries

As the total number of available queries is N , we consider that there are N
variables corresponding to measurements performed by the adversary, with Ki

queries per measurement
∑N
i=1Ki = N = s · Q, where if the actual number of

measurements is t we define Ki = 0 ∀ i > t.
Let PAnonad

(i) be the probability of solving i PoWs for non-adaptive adver-
aries, then the expected number of PoWs can be computed as:

PAnonad
(i) =

∑
I⊆{1,2,...,N},|I|=i

∏
j∈I

PKj

 ·
 ∏
l∈{1,2,...,N}−I

(1− PKl)

 for 1 ≤ i ≤ N

E[ZAnonad
(s)] =

N∑
i=1

PAnonad
(i) · i (5.1)

Theorem 7. The Non-adaptive adversaries are optimal with respect to the ex-
pected number of adversarial blocks.

Proof. Suppose the optimal general strategy Agen. Agen initially decides the first
chunk size K1 for the first measurement, where this decision (size of K1) is fixed
since it does not depend on any measurement outcome. Then, for the remaining
measurements, the chunk-sizes Ki are determined as a function of the remaining
queries and the history of successes/failures in obtaining a POW (measurement
outcomes [w1, · · · , wi−1]): Ki = f(N−(K1 + · · ·+Ki−1), [w1, · · · , wi−1]). Hence,
Agen can be described as follows:

Agen = (K1, f(N −K1, [w1]), · · · , f(N − (K1 + · · ·+Ki−1), [w1, · · · , wi−1]). · · · )
(5.2)

In particular, the size of K2 depends on the first measurement outcome w1 only.
To each of the two measurement outcomes corresponds an adversarial strategy
with w1 is fixed (here K2 is also fixed). These two strategies are denoted Aw1=1

and Aw1=0. Then, we compute the following two values:

e1 = E[ZAad(s) |w1 = 1]− 1 ; e0 = E[ZAad(s) |w1 = 0] (5.3)

This value expresses which of the two strategies Aw1=1,Aw1=0 have greater
expectation value in the remaining measurements (i.e. excluding the first mea-
surement outcome). Let w̄1 be the outcome for which the above is maximised
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(i.e. w̄1 = 1 if e1 ≥ e0 while w̄1 = 0 if e1 < e0). We define A2 to be a new
strategy that has the same K1 as our initial strategy, but then the remaining
strategy is fixed as if the first measurement outcome was w̄1 irrespective of the
actual measurement outcome. Then, for this strategy A2, we have:

A2 = (K1,K2 := f(N −K1, [w̄1]), f(N − (K1 +K2), [w̄1, w2]), · · · ,
f(N − (K1 + · · ·+Ki−1), [w̄1, · · · , wi−1]), · · · )

(5.4)

It is clear that forA2, both chunks K1 and K2 are fixed, (while the rest are picked
adaptively but having fixed the dependency on the first measurement outcome).
By construction, the expected number of adversarial blocks is at least as big as
the expected number of adversarial blocks of the initial strategy Aad, since we
chose w̄1 to be the measurement outcome that maximises the expectation of the
remaining N −K1 strategies.

We then proceed iteratively in the same manner until we construct a strategy
AN , such that all N measurement chunks are fixed, AN = (K1, · · · ,KN ). But,
then AN is a Non-Adaptive strategy with expected number of adversarial blocks
at least as large as Agen’s value, which concludes the proof.

5.2 Maximum Expectation of Non-Adaptive Strategies

Theorem 8. For any non-adaptive quantum adversary Anonad, the maximum
expected number of POWs, given any number of rounds s ≥ 1√

cpQ , is:

E := max E[ZAnonad
(s)] =

√
cp · s ·Q, for any s ≥ 1

√
cpQ

(5.5)

Proof. First, let us define Kmax, the number of quantum queries required to
create a block with probability one:

cpK2
max = 1 ; Kmax =

1
√
cp

(5.6)

This implies that for each measurement we also have Ki ≤ Kmax = 1√
cp (as an

optimal adversary would not waste more than Kmax queries per measurement),
thus we can rewrite Ki as:

Ki = ξiKmax, where 0 ≤ ξi ≤ 1 ∀i ∈ {1, .., N} (5.7)

Therefore, to compute the optimal expected number of adversarial blocks, we
need to determine the variables ξi which maximize E[ZAnonad

(s)]. Then using
Theorem 2, the success probability per each measurement i becomes:

PKi = cpK2
i = cp(ξiKmax)2 = cpξi

2 1

cp
= ξi

2 ∀i ∈ {1, .., N} (5.8)
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Then, using Eq. (5.1), we can compute the expected number of blocks created
during s consecutive rounds Anonad as:

E[ZAnonad
(s)] =

N∑
i=1

PAnonad
(i)·i =

N∑
i=1

i·

 ∑
I⊆{1,2,··· ,N}
|I|=i

∏
j∈I

ξ2
j ·

∏
l∈{1,··· ,N}−I

(
1− ξ2

l

)
(5.9)

Which, as we showed in Eq. (4.3) and Eq. (4.4), can be rewritten as:

E[ZAnonad
(s)] =

N∑
i=1

ξ2
i (5.10)

From the total number of queries condition
∑N
i=1Ki = N , we also have

∑N
i=1 ξi =

N
Kmax

=
√
cp · sQ. Therefore, we want to maximize

∑N
i=1 ξ

2
i subject to the con-

straint
∑N
i=1 ξi =

√
cp · sQ and 0 ≤ ξi ≤ 1. However we have ξ2

i ≤ ξi ≤ 1 which
leads to:

E[ZAnonad
(s)] =

N∑
i=1

ξ2
i ≤

N∑
i=1

ξi =
√
cp · sQ (5.11)

We can also easily see that there exists an optimal Non-Adaptive strategy which
achieves this maximum value E =

√
cp · sQ. We define a Non-Adaptive strategy

which uses N
Kmax

measurements and for each of these measurement use the same
number of Ki = Kmax queries, while there are no queries for the remaining
variables. For this strategy, using Eq. (5.7) we have ξi = 1 ∀i ≤ N

Kmax
and

ξj = 0 ∀ j > N
Kmax

. Then, by using Eq. (5.10) we get: E[ZAnonad
(s)] = N

Kmax
=

N
√
cp =

√
cpsQ. This concludes the proof that E =

√
cp · sQ is the maximum

expected number of adversarial blocks, achieved by Non-Adaptive strategies and
is in fact achieved when the adversary spends enough queries per measurement
to deterministically solve a PoW.

The analysis for Non-Adaptive adversaries when the total number of rounds
is sufficiently small (less than 1

Q
√
cp ) is presented in Appendix C. Note however,

that in this case, the number of rounds is too small and even the honest parties
will not produce more than one block, therefore is less relevant for the analysis
of the Bitcoin backbone protocol.

5.3 Concentration Result of Non-Adaptive Adversaries

We now turn on the issue of how concentrated around the average value is the
number of actual measured adversarial blocks. For the Non-Adaptive Adversary,
we have an independent search problem after each measurement, which has
outcome wi 0 or 1, irrespective of how many solutions have been found earlier.
We can therefore use Chernoff bounds to approximate the number of adversarial
blocks using the expectation value:

Pr[ZAnonad
(s) < (1 + ε)E[ZAnonad

(s)] ≥ 1− e−
ε2

2+ε ·E[ZAnonad
(s)] (5.12)
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Unfortunately, as we only know the maximum value E that the expectation can
achieve, we cannot use directly the Chernoff inequality (again using Hoeffding
inequality would give a much weaker bound). Instead, we need to derive our
own bound on the probability of ZAnonad

(s) to exceed the value E, probability
which can be expressed as a function of E (and not E[ZAnonad

(s)]). In order to
use this new derived Chernoff type of inequality, stated in Lemma 5 (and proved
in Appendix B), we make the following choice of variables: n = N , Xi = wi
(where wi = 1 if i-th measurement succeeded, and 0 otherwise), X = ZAnonad

(s),
M = E. This gives us the following concentration result:

Pr[ZAnonad
(s) > (1 + ε)E] < exp

(
−ε(3ε+ 2)

2(2 + ε)
· E
)
∀ ε > 0 (5.13)

Combining this concentration result together with Theorem 8, gives us the fol-
lowing bound on the number of adversarial PoWs:

Theorem 9. For any Non-Adaptive adversary Anonad, with probability

1− exp(− ε(3ε+2)
2(2+ε)

√
cpQs) and for any s ≥ 1√

cpQ and any ε > 0, it holds that:

ZAnonad
(s) < (1 + ε)

√
cp · sQ (5.14)

5.4 Backbone Protocol Analysis for Non-Adaptive Strategies

Now we need to determine the conditions on the hashing power of the adversary
such that the properties of the Bitcoin backbone protocol are satisfied.

Theorem 10. The common prefix property is satisfied with parameter k ≥ 2sf ,
for any s ≥ 2

f consecutive rounds against any Non-Adaptive Adversary, with

probability 1− exp(−g0(ε)
√
cpQs), as long as:

Q <
1− ε
1 + ε

· f(1− f)
√
cp

(5.15)

Proof. Using Lemma 2 and the concentration result from Theorem 9, the con-
dition of the adversary’s hashing power Q becomes:

(1 + ε)
√
cpQ < (1− ε)f(1− f) (5.16)

The proof follows from the above and Theorem 9, where g0(ε) = ε(3ε+2)
2(2+ε)

Theorem 11. The chain quality property is satisfied with parameter l ≥ 2sf ,
and µ = f for any s ≥ 2

f consecutive rounds against any Non-Adaptive Adver-

sary, with probability 1− exp(−g0(ε)
√
cpQs).

Corollary 3. Under the above restrictions on Q, the probability under which
the common prefix and chain quality are satisfied becomes:

Pnonad = Pnoisy = 1− exp(−g1(ε) · f(1− f) · s) (5.17)

20



6 General Adversaries

In the previous section we have examined non-adaptive adversaries, who choose
how to split the queries for all the next s rounds independently from the outcomes
of measurement. A general adversary is not of this type. Instead, a general
adversary adaptively decides how to use the remaining queries depending on how
successful the previous attempts (to solve a PoW) were. Because of Theorem 7
we know that in terms of expectation, the Non-Adaptive adversaries are optimal.
However, this does not mean that these adversaries are better always as we will
illustrate with two examples.

Example 1: Imagine a scenario that the expected length of the honest chain is
longer than that of the adversary. The strategy that maximises the expected
length of the adversarial chain is deterministic, since as proven earlier, the ad-
versary runs quantum search until he is (w.h.p.) certain that he will solve the
PoW. This strategy has zero probability of getting more (or less) than the ex-
pected number (is a very concentrated distribution). It is therefore obvious that
any other strategy (preferably with longer tails), non-adaptive or adaptive, that
is non-deterministic should be better.

Example 2: Assume that there is an Non-Adaptive strategy aiming to generate
a chain of M blocks (or more), by separating the queries sQ to chunks of sQ/M .
This strategy will only succeed if all M searches are successful, meaning that a
single failed search makes the strategy unsuccessful and the remaining queries
wasted. It is evident that an adaptive strategy can do better. An adversary
can start with the same strategy measuring after sQ/M queries, as long as the
searches are successful. In case one search is unsuccessful, any strategy that has
one more measurement than the Non-Adaptive (which now would have failed)
would be more promising.

The point here is that both the length but also the shape of the tails of the
distribution can be different for, non-optimal in terms of expectation, adaptive
strategies. Therefore to bound the probabilities of the tails in the most general
(within our security model) adaptive strategy we need to be more careful. We will
model the corresponding random variables using martingales. Unfortunately, the
standard concentration results (Azuma) for our setting provide very weak bounds
on the probabilities. This implies that an unreasonably long time (number of
rounds) is required to achieve a given security parameter (when compared with
classical or noisy-storage or Non-Adaptive analysis). In the remaining section we
will demonstrate this issue, derive some novel concentration inequalities suitable
for our purpose and get much improved bounds. We will then conclude with the
analysis of the bitcoin backbone protocol with this concentration result (while
we use from Theorem 7 the bound for the expectation). In the following sections,
we will denote these adversaries by Agen.
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6.1 A Martingale Modelling of General Adversaries

In the general strategies scenario, we cannot assume the independence of the
variables corresponding to different measurements, and therefore we cannot use
Chernoff inequalities to bound the tails of the distribution as was done in the
classical, the noisy storage and the Non-Adaptive cases. To bound the observed
number of adversarial PoWs using the maximal expectation value we need to
use an alternative concentration theorem.

We will then define the number of successful PoWs as a martingale. This
would then allows us to get a concentration result by applying the Azuma-
Hoeffding Inequality. The first step, is to use the Doob Martingale construction.

We start from the sequence of random variables {Wi}i - where Wi = 1 if the
i-th measurement after using Ki queries was successful and Wi = 0 otherwise.
We consider the total number of variables Wi to be N , denoting that there are
at most N measurements, and if in the actual strategy there are less measure-
ments, let’s say m measurements, then Km+1 = · · · = KN = 0 and consequently
Wm+1 = · · · = WN = 0. As seen in Definition 5, we need to define a function f ,
which in our case will be f(W1,W2, ...,WN ) = W1 + · · ·+WN , i.e. the number of
successful measurements using the chunk splits K1, ...,KN . Then, we have the
following martingale sequence:

Vi = E[f(W1,W2, ...,WN )|W1,W2, ...,Wi] (6.1)

In order to apply the Azuma inequality (Lemma 9), we must first upper bound
the difference (determine ci such that):

|Di| = |Vi − Vi−1| = |E[f |W1,W2, ...,Wi]− E[f |W1,W2, ...,Wi−1] | ≤ ci (6.2)

6.2 Bounds from the Standard Azuma Inequality

As each measurement cannot change the expected number of adversarial blocks
by more than 1, we get immediately that |Di| ≤ 1. Using Lemma 9 we get:

Pr(VN − V0 ≥ αN) ≤ exp

(
− α2N2

2
∑N
i=1D

2
i

)
(6.3)

For any α > 0. Noting that

VN = E[f(W1,W2, ...,WN )|W1, ...,WN ] = f(W1,W2, ...,WN ),

V0 = E[f(W1,W2, ...,WN )]
(6.4)

we get the following concentration result:

Lemma 6 (Concentration from Standard Azuma). For any General quan-
tum adversary Agen and for any α ≥ 0, we have:

Pr
(
ZAgen

(s)− E[ZAgen
(s)] ≥ αN

)
≤ exp

(
−α

2N

2

)
(6.5)
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We want a concentration result which bounds the difference ZAgen
(s) −

E[ZAgen
(s)] by εE[ZAgen

(s)] (as in the classical analysis), so we choose α =
ε
N maxE[ZAgen(s)] = ε

√
cp, which leads to:

Pr(ZAgen
(s)− E[ZAgen

(s)] ≥ εE[ZAgen
(s)]) ≤ exp

(
−ε

2cpsQ

2

)
(6.6)

If we keep s as a variable, and we use the upper bound for E[ZAgen
(s)] ≤

sQ/Kmax = sQ
√
cp, we obtain:

ZAgen
(s) ≤ (1 + ε)E[ZAgen

(s)] (6.7)

with probability at least 1− exp
(
− ε

2

2 sQ
√
cp · 1

Kmax

)
. Here we can immediately

see that this is very similar with the classical and other earlier results with the
crucial difference that in the exponent of the tail of the distribution, there is a

1
Kmax

factor. Given that Kmax � 1 this means that this probability becomes
small (where small is fixed by the security parameter) after many rounds, when
the expected blocks exceed Kmax ∼ 1/p1/2. The mathematical reason for this
weak bound, is that while the difference Di is bounded by one, “expected”
difference is very small something that cannot be captured unless the variance
of the variables also is included. Trying to use other known versions of Azuma’s
inequality such as the one defined in [39] also gives equally weak bound (see
Appendix D). Instead we derive our own version of Azuma’s inequality that
when applied to the Bitcoin backbone gives a tighter bound.

6.3 An Azuma Generalization

Following up to a point steps of the proof from [39], we derive our own version
of Azuma’s inequality, and apply it to our problem. We begin by introducing
the random variable σi (which will use the quantum problem-specific bounds),
defined as: σ2

i := E[(Vi − Vi−1)2 |W1, · · · ,Wi−1].
Consider two non-negative constants γ1 < γ2. Now, let us consider that for

N1 of the i’s we have σ2
i ≤ γ1 and for the remaining N2 = N−N1 the variance is

larger but smaller than γ2, i.e. γ1 < σ2
i ≤ γ2, and we denote Γ1 the set of indices

that have smaller variance and Γ2 the set of indices that have greater variance.
Note, that in [39] a unique number σ was used to bound all the variances, while
we split the variances to two set: one with very small variance and one with
larger variance. We can now derive the following concentration result:

Theorem 12 (Alternative concentration result). Let {Vi}Ni=0 be a mar-
tingale with respect to the sequence W1,W2, · · ·WN such that |Vi − Vi−1| ≤ 1.
Consider σ2

i := E[(Vi − Vi−1)2 |W1, · · · ,Wi−1] and assume for some constants
0 < γ1 < γ2, the following hold: σ2

i ≤ γ1 ∀ i ∈ Γ1 where |Γ1| = N1 and
γ1 < σ2

j ≤ γ2 ∀ j ∈ Γ2 where |Γ2| = N − N1. Then for any t > 0, α > 0, we
have:

Pr[|VN − V0| ≥ α ·N ] ≤

e−αNt ·
(

exp (−tγ1) + γ1 exp(t)

1 + γ1

)N1

·
(

exp (−tγ2) + γ2 exp(t)

1 + γ2

)N−N1 (6.8)
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Note that this gives a bound for this probability for any choice of t. In prin-
ciple, given other constraints (regarding the values of γ1, γ2 and the cardinalities
of the sets Γ1, Γ2), one can find the suitable/optimal choice of t that minimises
the tail in this inequality. The proof is similar to the first steps of [39], and we
give the details in Appendix E.

6.4 Stronger Bound from the Alternative Concentration Inequality

Having obtained this new concentration inequality of Eq. (6.8), we return to the
analysis of the Bitcoin backbone trying to bound the tails of the distribution of
the variable Z(s). Using the martingale defined in the beginning of the section,
we see that D2

i ≤ 1, and also σ2
i = E[D2

i |W1, · · · ,Wi−1] ≤ 1. Therefore, we can
choose γ2 = 1 and use the notation γ := γ1 and use Eq. (6.8).

Lemma 7 (Concentration from alternative inequality). For any general
quantum adversary Agen and for any t > 0 , α ≥ 0 and 1 ≥ γ ≥ 0, we have:

Pr[ZAgen
(s)− E[ZAgen

(s)] ≥ α ·N ] ≤ AN1 ·BN−N1 where, (6.9)

A :=
γ exp(t(1− α)) + exp(−t(γ + α))

1 + γ
; B :=

exp(t(1− α)) + exp(−t(1 + α))

2
(6.10)

To get a good bound, we need to make some choices for the various parame-
ters in Eq. (6.9). The most important choice is the relation between the value γ
of “small-variance” variable and the size of the corresponding set |Γ1| = N1. It is
not hard to see that the bigger the set Γ1, the better the bound, since variables
with smaller variance contribute less in the tail of the distribution. Therefore we
would like to lower bound the value of N1.

Lemma 8. For all quantum adversaries, in the setting of the Bitcoin backbone
protocol, the number of individual random variables that have variance greater
than γ is bounded by N

Kmaxγ1/2 , i.e.

N −N1 ≤
N

Kmax
√
γ

; N1 ≥ N
(

1− 1

Kmax
√
γ

)
(6.11)

Proof. For Bernoulli variables, the variance σ2
i is bounded by the average prob-

ability pi. We want to obtain (a bound on) the maximum number of variables
that can have variance greater than γ. Therefore σ2

i ≥ γ implies pi ≥ γ. How-

ever, pi =
K2
i

K2
max

since this is a quantum strategy also means that for every

variable i that belongs to Γ2, the corresponding queries to the QRO are at least
Ki ≥ Kmax

√
γ ∀ i ∈ Γ2. Given that the total number of queries is N =

∑
iKi,

the set Γ2 can have no more than N
Kmax

√
γ elements.

Using the optimality of the Non-Adaptive strategies with respect to the ex-
pectation (Theorem 7), and their maximum expectation value (Theorem 8)
E =

√
cp · s ·Q, leads to the following main result regarding general adversaries:
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Theorem 13. Given the choice of parameters: γ = α2/3 and t = α1/3

4 , α =
ε

Kmax
where 0 < ε ≤ 1/3, for any Adversarial strategy, we have the concentration

result:

Pr(ZAgen(s)− E[ZAgen(s)] ≥ εE) . exp

(
− E

K
1/3
max

· ε
1/3

32
(7ε− 1)

)
(6.12)

Sketch Proof (full proof in Appendix F). Assuming that all parameters γ, t, α�
1 are small, Eq. (6.10) becomes:

A . exp

(
γt2

2
− αt

)
; B ≤ exp

(
t

(
t

2
− α

))
(6.13)

which using γ = α2/3, t = α1/3

4 is:

A . exp

(
−7α4/3

32

)
; B ≤ exp

(
α2/3

4

(
1

8
− α2/3

))
(6.14)

Using the lower bound on N1 from Eq. (6.11) and plugging these into Eq. (6.9):

Pr(ZAgen
(s)− E[ZAgen

(s)] ≥ αN) . exp

(
−7α4/3

32
N +

α1/3

32

N

Kmax

)
(6.15)

By choosing α = ε
Kmax

and noting that E ≤ N
Kmax

we get:

Pr(ZAgen
(s)− E[ZAgen

(s)] ≥ ε N

Kmax
) . exp

(
− N

K
4/3
max

· ε
1/3

32
(7ε− 1)

)
Pr(ZAgen(s)− E[ZAgen(s)] ≥ εE) . exp

(
− E

K
1/3
max

· ε
1/3

32
(7ε− 1)

)
(6.16)

We can see immediately that this is a much better bound than the ones
obtained from Lemma 6 and Lemma 12, since on these lemmas the exponential

decay was divided by a term Kmax, while here is divided by K
1/3
max. In other

words, this probability becomes negligible as the expectation of the length of the
honest parties chain (which exceeds the expectation of the adversary’s) becomes

larger than K
1/3
max ∼ 1/p1/6. While this is worse than classical, depending on

parameters, does not require exceedingly large s to achieve.

The choices of the parameters in Theorem 13 lead to a bound, that is not
only much better than the results using Azuma inequalities, but is also very
close to the optimal bound obtained with this approach (see Appendix G).
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6.5 Backbone Protocol Analysis for General Strategies

Finally, we determine the conditions on the hashing power of the General ad-
versary such that the properties of the Bitcoin backbone protocol are satisfied.

Theorem 14. The common prefix property is satisfied with parameter k ≥ 2sf ,
for any s ≥ 2

f consecutive rounds against any General Adversary, with probability

1− exp(−g2(ε) · (cp) 2
3 ·Q · s), as long as:

Q <
1− ε
1 + ε

· f(1− f)
√
cp

. (6.17)

Proof. Using Lemma 2 and the concentration result from Theorem 13, the con-
dition of the adversary’s hashing power Q becomes:

(1 + ε)
√
cpQ < (1− ε)f(1− f) (6.18)

The proof follows from the above and Theorem 13, where g2(ε) := ε
1
3 (7ε−1)

32 .

Theorem 15. The chain quality property is satisfied with parameter l ≥ 2sf ,
and µ = f for any s ≥ 2

f consecutive rounds against any General Adversary,

with probability 1− exp(−g2(ε) · (cp) 2
3 ·Q · s).

Corollary 4. Under the above restrictions on Q, the probability under which
the common prefix and chain quality are satisfied becomes:

Pgen = 1− exp
(
−g3(ε) · f(1− f) · (cp) 1

6 · s
)

(6.19)

where g3(ε) = g2(ε) · 1−ε
1+ε .

7 Summary and Future Directions

In this section we provide a comparison between the analysis of the Bitcoin
backbone protocol against classical adversaries of [21] and our analysis against
the three types of quantum adversary (noisy quantum storage, non-adaptive and
general). In Table 1 and in the following analysis we compare four main aspects:

– “Honest Majority” which expresses the relation between the honest hashing
power and the (classical or quantum) adversary’s hashing power.

– The expected number of adversarial blocks within a sufficiently large number
of consecutive rounds.

– The probability of a “typical execution,” referring to the probability that
the required bounds on the number of adversarial queries hold.

– The number of rounds required for each type of adversary to reach the same
level of security.
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Aclassical Anoisy Anonad Agen

Honest
Majority

t
n−t <

1− 3(f + ε)
Q <

√
1−ε
1+ε
· f(1−f)

cp
Q < 1−ε

1+ε
· f(1−f)√

cp
Q < 1−ε

1+ε
· f(1−f)√

cp

Max Exp
Adv. PoWs

pqt · s cpQ2 · s √
cp ·Q · s √

cp ·Q · s

Prob.
Concentr.

Pclassical = 1−
e−Ω(ε2fs)

Pnoisy = 1−
e−g1(ε)f(1−f)s

Pnonad =
Pnoisy

Pgen = 1−

e−g3(ε)f(1−f)(cp)
1
6 s

Number
rounds

sclassical snoisy = O(sclassical) snonad = snoisy
sgen =

sclassicalO(p−1/6)

Table 1. Comparison between adversaries

where g1(ε) = 1−ε
1+ε ·

ε(3ε+2)
2(2+ε) and g3(ε) = 1−ε

1+ε ·
ε

1
3 (7ε−1)

32 .

The expressions in Table 1 use the parameter f that denotes the probability
that at least one honest party computes a PoW at round i. To directly relate the
hashing power of the honest players qn with the hashing power of the adversary
Q, we use f = 1− (1− p)qn.
For Anoisy, applying the Bernoulli inequality and assuming that pqn is much
smaller than 1 we can approximate 1−pqn

1+pqn by 1 and we obtain the condition Q ≤
O(
√
qn), indicating that for the Noisy Quantum Storage adversary, the quantum

adversarial hashing power must be of order square root of the hashing power of
the honest players. This is a very intuitive result, as we expect a quadratic
quantum speed-up within a single round. Because of the assumption of noisy
quantum storage, different rounds do not admit any “joint” quantum attack, so
the classical analysis (in terms of concentration and other issues) carries over
with only difference the quadratic speed-up occurring within each round.

For Agen and Anonad , applying the Bernoulli inequality, and again approxi-
mating 1−pqn

1+pqn with 1 we obtain the condition Q ≤ qnO(
√
p), indicating that for

the Non-Adaptive and more importantly for General adversaries, the quantum
adversarial hashing power must be of order the honest hasing power multiplied
by the square root of the probability of success of a single query. Again we can
see that there is a quantum speed-up that leads to requiring stronger constraints
on the adversarial hashing power. One, naively, could imagine that the speed-
up and the separation between classical and quantum power (being quadratic)
would keep growing with the number of queries (and thus rounds). This is not
what happens, since the quadratic speed-up reaches a maximum, when one uses
sufficient queries such that the probability of solving a PoW becomes unity. This
happens when one uses Kmax = (cp)−1/2 queries. Therefore, the overall quan-
tum speed-up means that the honest (classical) hashing power should be Kmax

times greater than the adversarial quantum hashing power.

Finally, from relating the probabilities Pclassical, Pnoisy, Pnonad, Pgen, under
which the properties of the backbone Protocol hold (common prefix and chain
quality) we can relate the number of rounds required for different adversaries
to achieve same accuracy. We denote sclassical the number of necessarry rounds
in the analysis against classical adversaries to achieve a given accuracy (de-

27



termined by the security parameter). Similarly, snoisy, snonad and sgen are the
corresponding rounds for Noisy Quantum Storage, Non-Adaptive and General
adversaries. Using the same approximations as earlier in this section, we get
snoisy = snonad = O(sclassical), while sgen = sclassicalO(p−1/6). This indicates that
for the most general quantum adversary to achieve the same negligible proba-
bility for a non-typical execution, we need more rounds but this extra overhead
is relatively small as it scales with the sixth root of p−1.

Regarding directions for future work, there are a few generalizations of our
analysis that one can consider. Our analysis of the backbone protocol considers
a model with a fixed number of parties and difficulty. The first generalization
to consider is the Bitcoin backbone protocol with variable difficulty [22]. The
second is to consider multiple quantum adversaries. Having multiple classical
adversaries that are controlled by a single party, is relatively straight forward,
as we can assume that the single party has access to the sum of the individual
queries. This assumption is not easy to make in the quantum case. Having more
parallel quantum computation power is not the same as having sequential, and to
obtain the quantum search speed-up, the queries need to be applied sequentially
(since the output quantum state of the one query from the QRO needs to be fed
back to the next query). Therefore a more accurate modelling would be required
to truly capture the scenario of multiple quantum attackers.

The third generalization would be to consider the possibility of hybrid classical-
quantum adversaries. i.e. adversaries having a number of classical queries and on
top of this a number of quantum queries too (the quantum queries can always
be used as classical queries but not the converse).

Finally a fourth and potentially the more substantial generalization to the
analysis of the Bitcoin backbone protocol in the quantum era, is to allow (at
least some of the) honest parties to have quantum hashing power.
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Appendices
A Preliminaries Probability Theory

Definition 3 (Chernoff Bounds). Consider {Xi}i a sequence of independent
random variables and let X =

∑n
i=1Xi, such that Xi = 1 with probability pi and

Xi = 0 with probability 1− pi. Let µ = E(X). Then, we have:

Upper Tail: Pr[X ≤ (1 + ε)µ] ≥ 1− e−
ε2

2+εµ for all ε > 0 (A.1)

Lower Tail: Pr[X ≥ (1− ε)µ] ≥ 1− e− ε
2

2 µ for all 0 < ε < 1 (A.2)

Definition 4 (Martingale). A Martingale is a sequence of random variables
V1, V2, ... such that for any n, we have:

E[Vn+1|V1, ..., Vn] = Vn (A.3)

Definition 5 (Doob Martingale). Consider any sequence of variables U =
(U1, ..., Un) ∈ An and a function f : An → R.
Then the following sequence Vi is a martingale:

Vi = E[f(U1, U2, ..., Un)|U1, U2, ..., Ui] (A.4)

Lemma 9 (Azuma’s inequality [5]). If V is a martingale, then the following
holds:

– If |Vk − Vk−1| < ck for any k,
– Then for any N and any α > 0, we have:

Pr[VN − V0 ≥ αN ] ≤ exp

(
−α2N2

2
∑N
i=1 c

2
i

)
(A.5)

Lemma 10 (Refined Azuma’s inequality [39]). Let {Vi}Ni=0 be a martingale
with respect to the sequence W1,W2, · · · . Assume for some constants d, σ > 0,
the following hold:

|Vi − Vi−1| ≤ d
V ar(Vi |W1, · · · ,Wi−1) = E[(Vi − Vi−1)2 |W1, · · · ,Wi−1] ≤ σ2

(A.6)

Then for every α ≥ 0, we have:

Pr[VN − V0 ≥ αN ] ≤ exp

(
−N ·D

(
δ + γ

1 + γ
|| γ

1 + γ

))
(A.7)

where:

γ =
σ2

d2
, δ =

α

d

D(p || q) = p ln
p

q
+ (1− p) ln

1− p
1− q

∀ p, q ∈ [0, 1]

(A.8)
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B Refined Chernoff Bound : Proof of Lemma 5

Proof. We separate in 2 possible cases:
If E[X] ≥ M

2 , then in this case, we can apply Multiplicative Chernoff
bound (Definition 3) and we get for any ε > 0:

Pr[X > (1 + ε)E[X]] ≤ exp

(
− ε2

2 + ε
· E[X]

)
≤ exp

(
− ε2

2 + ε
· M

2

)
(B.1)

If instead E[X] < M
2 , then we follow the next steps. As Xi are independent

random variables, using the generic Chernoff bound, we obtain that for any t > 0
and any a > 0, we have:

Pr[X ≥ a] ≤ e−ta · E

[
n∏
i=1

etXi

]
= e−ta ·

n∏
i=1

E[e−tXi ] (B.2)

where for the last equality we used the independence of the variables Xi.
Now, given that we want to compare X with the maximum expectation M , we
are choosing a = (1 + ε)M , which gives us:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M ·
n∏
i=1

E[etXi ] (B.3)

Now, using the notation Pr[Xi = 1] = pi and thus Pr[Xi = 0] = 1− pi, we have
that etXi is equal to et with probability pi and equal to 1 with probability 1−pi,
which leads to: E[etXi ] = pi · et + (1− pi) · 1. Therefore, the above equation can
be rewritten as:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M ·
n∏
i=1

[
pi(e

t − 1) + 1
]

(B.4)

Using the inequality: 1 + x ≤ ex for x = pi(e
t − 1), implies:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M ·
n∏
i=1

epi(e
t−1) = e−t(1+ε)M · e(et−1)

∑n
i=1 pi (B.5)

But
∑n
i=1 pi = E[X], which leads us to:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M · e(et−1)·E[X] (B.6)

Using the condition E[X] < M
2 , we obtain:

Pr[X > (1 + ε)M ] < e−t(1+ε)M · e(et−1)·M2 (B.7)

Now, we can choose t = ln(1 + ε) > 0:

Pr[X > (1 + ε)M ] <
eε·

M
2

(1 + ε)(1+ε)M
=

[
e
ε
2

(1 + ε)1+ε

]M
(B.8)
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Then, using the inequality: 2ε
2+ε ≤ ln(1 + ε), it can be shown that:

e
ε
2

(1 + ε)1+ε
≤ exp

(
−ε(3ε+ 2)

2(2 + ε)

)
(B.9)

which leads to the final result:

Pr[X > (1 + ε)M ] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)

(B.10)

To complete the proof we need to find the minimum probability between the
2 probabilities we determined for the cases E[X] ≥ M

2 and E[X] < M
2 :

exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)
< exp

(
− ε2

2 + ε
· M

2

)
(B.11)

Therefore, we have obtained the final result:

Pr[X > (1 + ε)M ] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)

(B.12)

C Optimal Non-Adaptive for Rounds s ≤ 1√
cpQ

Lemma 11. For any Non-Adaptive quantum adversary Anonad, the maximum
expected number of PoWs obtained by Anonad, for any number of rounds s ≤

1√
cpQ is:

e := max E[ZAnonad
(s)] = cp · s2 ·Q2, for any s ≤ 1

Q
√
cp

(C.1)

Proof. Firstly we can rewrite the expected number of PoWs as:

E[ZAnonad
(s)] =

t∑
i=1

PAnonad
(i) · i =

=

t∑
i=1

i ·

 ∑
Ii⊆It,|Ii|=i

∏
j∈Ii

cp ·K2
j

 · [ ∏
l∈It−Ii

(
1− cp ·K2

l

)] (C.2)

If for all i, we have 0 ≤ PKi ≤ 1, in other words when K2
i ≤ N2 ≤ 1

cp , or

equivalently s < 1
Q
√
cp , we can compute E[ZAnonad

(s)] as:

E[ZAnonad
(s)] = cp · (K2

1 +K2
2 + · · ·+K2

t ),when s ≤ 1

Q
√
cp

(C.3)
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Then, by maximizing E[ZAnonad
(s)] over all t and all K1, ...,Kt subject to the

constraint K1 + · · · + Kt = N , we obtain that the maximum value is obtained
for: t = 1 and K1 = N . Which leads to:

maxE[ZAnonad
(s)] = cp · s2 ·Q2 = e,when s ≤ 1

Q
√
cp

(C.4)

D Concentration from Stronger Azuma of [39]

In order to improve the bound of Eq. (6.6, we try to use the stronger version
of Azuma’s inequality, defined in Lemma 10, that explicitly has the variance in
the expressions. Firstly, one can easily see that we can choose2 d = σ = 1. We
can therefore use γ = 1 and δ = α in Lemma 10. We will choose α = ε/Kmax =
ε
√
cp� 1 and thus we get:

Lemma 12 (Concentration from Stronger Azuma). For any General quan-
tum adversary Agen and for any α ≥ 0, we have:

Pr
(
ZAgen

(s)− E[ZAgen
(s)] ≥ αN

)
≤ (D.1)

exp

(
−N ·

(
1 + α

2
ln (1 + α) +

1− α
2

ln (1− α)

))
Then, as the maximum expected number of adversarial blocks is: maxE[ZAgen

(s)] =
E = N

√
cp, we get:

Pr[ZAgen
(s) ≥ (1 + ε)E[ZAgen

(s)]] ≤

exp

(
−N ·

(
1 + ε

√
cp

2
ln (1 + ε

√
cp) +

1− ε√cp
2

ln (1− ε√cp)
))

(D.2)

which is also a weak bound. Specifically, it is no better than the standard Azuma,
as one can see noting that

√
cp = 1

Kmax
� 1 and by expanding the logarithms

of the r.h.s. the bound becomes: exp
(
−Nε2/K2

max

)
= exp

(
−ε2sQ√cp · 1

Kmax

)
giving the exact same result as that obtained from standard Azuma at Eq. (6.6).

E Proof of Theorem 12

The proof, up to some point, follows [39], and the reader is referred to that
reference for more details in the first steps. Since in our case the difference Di of
the martingale is bounded by unit, in our theorem we have restricted attention

2 Note that choosing σ = 1 seems to be very big. In any reasonable adversarial strat-
egy (using multiple queries for measurements) the majority of the N variables will
actually have zero variance zero, since their corresponding probability will also be
zero.

35



to that case (in [39] notation we set d = 1). It is not hard to generalise for
different values of the difference.

We note that
σ2
i = E[(Vi − Vi−1)2 |W1, · · · ,Wi−1]. (E.1)

Then, we can first prove that:

V ar(Di |W1, · · · ,Wi−1) = σ2
i (E.2)

To prove that we first show that:

E[Di |W1, · · ·Wi−1] = 0 (E.3)

Then, we have that for any t ≥ 0:

E

[
exp

(
t ·

N∑
i=1

Di

)]
= E

[
exp

(
t ·

N−1∑
i=1

Di

)
· E[exp(t ·DN ) |W1, · · · ,WN−1]

]
(E.4)

Using Bennett Inequality: if X is a random variable, and let x̄ = E[X] such
that: E[(X − x̄)2] ≤ σ2 and X ≤ b. then for any t ≥ 0, we have:

E[etX ] ≤ etx̄[(b− x̄)2e−
tσ2

b−x̄ + σ2et(b−x̄)]

(b− x̄)2 + σ2
(E.5)

where for our case we have X = Di |W1, · · · ,Wi−1, and thus, x̄ = 0 and b = 1,
we therefore obtain:

E[et·Di |W1, · · · ,Wi−1] ≤
exp
(
−t · σ2

i

)
+ σ2

i · exp(t)

1 + σ2
i

(E.6)

By combining Eq. (E.4) and Eq. (E.6) for i = N , we then get:

E

[
exp

(
t ·

N∑
i=1

Di

)]
≤

exp
(
−t · σ2

N

)
+ σ2

N · exp(t)

1 + σ2
N

· E

[
exp

(
t ·

N−1∑
i=1

Di

)]
(E.7)

And then by recursively applying this inequality, we obtain:

E

[
exp

(
t ·

N∑
i=1

Di

)]
≤

exp
(
−t · σ2

N

)
+ σ2

N · exp(t)

1 + σ2
N

· · · · ·
exp

(
−t · σ2

1

)
+ σ2

1 · exp(t)

1 + σ2
1

(E.8)

Now, to relate to the quantity we are interested in: VN −V0 = W1 + · · ·+WN −
E[W1 + · · ·+WN ] = ZAgen

(s)−E[ZAgen
(s)], we apply Chernoff inequality, which

gives us for any α > 0:

Pr[VN − V0 ≥ αN ] ≤ exp(−αNt) · E

[
exp

(
t ·

N∑
i=1

Di

)]
(E.9)
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Using Eq. (E.8), we get the following concentration result for any α > 0:

Pr[VN − V0] ≥ α ·N ] ≤ exp(−αNt) ·
N∏
i=1

(
exp
(
−t · σ2

i

)
+ σ2

i exp(t)

1 + σ2
i

)
(E.10)

Now, we can use the upper bounds on σi specified in Theorem 12:

σ2
i ≤ γ1 ∀ i ∈ Γ1 where |Γ1| = N1

γ1 < σ2
j ≤ γ2 ∀ j ∈ Γ2 where |Γ2| = N −N1

(E.11)

Using the fact that the function g(x) = x exp(t)+exp(−tx)
1+x is an increasing function

for x > 0, the concentration result in Eq. (E.10) becomes:

Pr[VN − V0] ≥ α ·N ] ≤

exp (−αNt) ·
(

exp (−tγ1) + γ1 exp(t)

1 + γ1

)N1

·
(

exp (−tγ2) + γ2 exp(t)

1 + γ2

)N−N1

(E.12)

for all values of t ≥ 0 and α ≥ 0.

F Proof of Theorem 13

First we obtain simpler form for A,B. Using the inequality: ex + e−x ≤ 2ex
2/2,

leads to:

B ≤ exp

(
−αt+

t2

2

)
= exp

(
t

(
t

2
− α

))
(F.1)

Similarly we can simplify the A term. In our analysis, we will have 0 ≤ t� 1 (and
the same for γ) and we can therefore use Taylor expansion of the exponentials
to get:

A ≤ exp(−αt)
1 + γ

(
γ(1 + t+ t2/2 + γ

t3

3!
) + (1− tq + (γt)2/2− γ3 t

3

3!
+O(t4))

)
≤ exp(−αt)

1 + γ

(
(γ + 1) +

γt2

2
(1 + γ) +

γt3

3!
(1− γ2) +O(t4)

)
.

(
1 +

γt2

2

)
exp(−αt) (F.2)

where in the last step we omitted terms involving γt3 and higher. Then using,
the inequality 1 + x ≤ ex for any real x, we obtain:

A ≤ exp

(
γt2

2
− αt

)
(F.3)

Plugging these into Eq. (6.9), we deduce the following bound on the concentra-
tion result:
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Pr[ZA(s)− E[ZA(s)] ≥ α ·N ] ≤ exp

(
N1(

γt2

2
− αt) + (N −N1)t(

t

2
− α)

)
(F.4)

Equivalent to:

Pr[ZA(s)− E[ZA(s)] ≥ α ·N ] ≤ exp

(
(N − (1− γ)N1)

2
t2 − αNt

)
(F.5)

By further replacing N1 from Eq. (6.11), we get:

Pr[ZA(s)− E[ZA(s)] ≥ α ·N ] ≤ exp

((
γ

2
+

1− γ
2Kmax

√
γ

)
Nt2 − αNt

)
(F.6)

From Theorem 13 we use:

γ = α2/3 and t =
α1/3

4
(F.7)

and Eq. (F.2) becomes:

A ≤ exp

(
−α

4/3

4

)(
1 +

α4/3

32

)
. exp

(
−7α4/3

32

)
(F.8)

We can see that this converges to zero (if raised to a sufficiently high power).
Similarly, Eq. (F.1) becomes:

B ≤ exp

(
α2/3

4

(
1

8
− α2/3

))
(F.9)

This term, actually, diverges when raised to high enough power. It is essential to
show that the product of these two terms converges to zero for our parameters
choices.

We also note that with γ = α2/3 Eq. (6.11) becomes

N1 = N

(
1− 1

Kmaxα1/3

)
(F.10)

Now, we revisit Eq. (6.9) and using Eqs. (F.8,F.9,F.10) we obtain

Pr(Z(s)− E[Z(s)] ≥ αN) ≤

exp

(
−7α4/3

32
N

(
1− 1

Kmaxα1/3

)
+
α2/3

4

(
1

8
− α2/3

)
N

Kmaxα1/3

)
. exp

(
−7α4/3

32
N +

α1/3

32

N

Kmax

) (F.11)
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where we kept the leading orders from each of the two terms. Setting α = ε
Kmax

where 0 < ε ≤ 1/3 is the concentration parameter we get:

Pr

(
Z(s)− E[Z(s)] ≥ ε N

Kmax

)
. exp

(
− N

K
4/3
max

ε1/3

32
(7ε− 1)

)
(F.12)

which clearly converges to zero if ε > 1/7. The proof is concluded by noting that
E := maxE[Z(s)] = N/Kmax.

G Optimality of Generalised Azuma Concentration

In Section 6.3 we made certain choices for γ, t, α and we got a concentration
result that is (much) better than the earlier attempts using existing concentra-
tion results (Azuma and stronger version). In this appendix we give a heuristic
argument why those choices not only are asymptotically optimal, but also get
a concentration result that is very close to the one we expect to be the best
(including the constants in the exponential decay of the expression).

We will fix α = ε
Kmax

as in the main text (but for now we keep it as α).
We want to find the value of t that minimises Eq. (6.9) given the minimum N1

allowed by Eq. (6.11). Once we do this for any γ we find also the choice of γ
that minimises this further (note that the chosen N1 also is a function of γ).
We make a heuristic analysis, where using the assumptions that γ, α, t� 1, we
expand the expressions for A,B keeping only the leading terms with respect all
the (small) variables. We then get:

A ∼ 1− αt+
(γ + α2)t2

2
+O(higher).

and

B ∼ 1 +
t2

2
(1 + α)− αt+O(higher)

Also we use N −N1 = N
Kmax

√
q and since 1

Kmax
√
γ � 1 we can approximate

N1 ∼ N so that Eq. (6.9) becomes:

AN1BN−N1 .

(
1− αNt+

γt2

2
N

)(
1 +

t2

2

N

Kmax
√
γ
− αt N

Kmax
√
γ

)
(G.1)

. 1 +N

(
−αt

(
1 +

1

Kmaxγ1/2

)
+
γt2

2

(
1 +

1

Kγ3/2

)
+O(higher)

)
The optimal choice of t for this expression can be found to be approximately:

t =
α

γ
·

1 + 1
Kmaxγ1/2

1 + 1
Kmaxγ3/2

= α · 1 +Kmaxγ
1/2

1 +Kmaxγ3/2
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To obtain this, we dropped higher terms and then fixed all variables except t,
took the derivative of the truncated expression w.r.t. t and got the above value.
We therefore know that for this value of t we have the tightest bound irrespective
of the value of γ. The bound becomes:

AN1BN−N1 . 1−N · α
2

2
·
(
Kmaxγ

1/2 + 1

Kmaxγ3/2 + 1

)
Assuming Kmax � 1, we can find the minimum of the above expression (taking
derivative w.r.t. γ this time) that occurs for γ ≈ 1

(2Kmax)2/3 .

This means:

γ =
( α

2ε

)2/3

=

(
1

2Kmax

)2/3

By plugging this value of γ to the above expression for t gives us:

t = (2Kmax)2/3
(α

3

)
=

(2ε)2/3

3
α1/3 =

(
(2)2/3ε

3

)
1

K
1/3
max

In other words, the optimal bound could be obtained with the following choices:

γ =
( α

2ε

)2/3

; t =
(2ε)2/3

3
α1/3 (G.2)

It is worth to note, that these choices are extremely close with the ones used in
our analysis in the main paper. As far as the dependency on α is concerned, for
both γ, t we have the same functional dependency. The constants that actually
are required to achieve the best bound, depend on ε in general. The values we
chose are close to optimal for some choices of ε.

The final optimal bound with the approximations made (that holds for all
the allowed ε’s), after plugging the expressions for γ, t we obtained and some
more calculations turns out to be:

AN1BN−N1 . exp

(
− N

K
4/3
max

· ε
2

3
·
(

1

2

)1/3
)
≈ exp

(
− N

K
4/3
max

· ε
2

4

)
For example, for the choice ε = 2/7 the above expression gives a coefficient of
1/49 which is marginally better than the 0.02 that we get with the same ε from
Eq. (6.12).

This section demonstrates that our choices (that might have appeared ran-
dom in the main text) not only give a good bound that is asymptotically the
best, but they also give a bound that even the constants of the exponential decay
are close to the optimal ones.
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