
1

 Supercomputer organized by network mining

sonm.io

https://sonm.io/

2

SONM

(Supercomputer organized by network mining)

Distributed computing power exchange

Decentralized operating system for fog computing

05.05.2017

www.sonm.io

Reddit

BitcoinTalk

GitHub

Slack

Twitter

Facebook

Google Groups

Telegram

Medium

https://www.reddit.com/r/SONM/
https://bitcointalk.org/index.php?topic=1845114.0
https://github.com/sonm-io
https://sonmio.slack.com/
https://twitter.com/SONM17369326
https://www.facebook.com/SONM-Supercomputer-Organized-by-Network-Mining-954849207981204/
https://groups.google.com/forum/#!forum/sonm---supercomputer-organized-by-network-mining
https://t.me/sonm_eng
https://blog.sonm.io

3

TABLE OF CONTENT
Introduction	 5

1.1. What is SONM	 5

1.2. SONM Use Cases	 7

1.2.1. Scientific projects	 7

1.2.2. Site hosting	 7

1.2.3. Game server use-cases	 7

1.2.4. Neural networks projects	 8

1.2.5. Rendering video and computer graphics.	 8

1.3. Cost-efficiency for the end-clients	 8

2. SONM technology	 8

2.1. IoE, IoT and fog computing	 9

2.2. World Computer	 10

2.4. World Computer General Architecture / Infrastructure	 11

2.3. SONM world computer implementation scheme	 11

2.5. World computer’s Infrastructure as a service (WC IaaS)	 13

2.5.1. Slave Messaging Framework	 13

2.5.2 Slave API	 13

2.5.3. The smart contract system	 13

2.5.4 SONM Miner-Hub interaction solution	 16

2.5.5 SONM Client-Hub interaction solution	 18

2.5.6. SONM ‘Blockchain-government’ Expansion Policy	 19

2.5.7. SONM Client-Hub content delivery method	 19

2.6. SOSNA in a nutshell	 19

2.6.1 What is SOSNA	 19

2.6.2 Applications and containerization	 19

2.6.3 Slaves & their services	 21

2.6.4 Masters and Gateways	 22

2.6.5 Grid - Core	 22

2.6.6. Intercommunication Services	 23

2.7. World Computer SaaS and its API	 23

2.8. Results verification	 23

2.9. Safety and Security	 25

2.10 AI implementation	 25

4

2.11. SONM GitHub repositories	 25

2.12. UI and API	 25

2.12.1. Example of how the SONM marketplace works	 25

2.12.2. Interface prototype	 26

2.12.3. API for software developers	 27

3. Development roadmap	 28

3.2. Modules’ implementation roadmap	 29

3.3. Dissemination of the development process information	 31

4. SONM in comparison to other grid computing projects	 32

4.1. SONM in comparison to Golem Network	 32

4.2. SONM in comparison to iEx.Ec project	 32

4.3. SONM in comparison to Elastic Project	 33

4.4. Differences from GridCoin, FoldingCoin and CureCoin	 33

4.5. Compatibility and integration with other decentralized on-demand computing services	 33

4.6 Comparison summary	 34

5. References	 34

5

INTRODUCTION
1.1. What is SONM
SONM is a decentralized worldwide fog supercomputer for general purpose computing from site hosting to sci-
entific calculations. SONM company is an effective way to solve a worldwide problem - creating a multi-purpose
decentralized computational power market.

Unlike widespread centralized cloud services, SONM project implements a fog computing[1] structure – a decen-
tralized pool of devices, all of which are connected to the internet (IoT / Internet of Everything).

IoT, as an important part of the available computational power in the world, is one of the key directions of work for
the SONM project. (See further, chapter 2.1)

We use cost-efficient fog computing instead of a costly cloud structure, so there is no more need to pay in ad-
vance for private and monopolized cloud computing such as with Amazon, Microsoft, Google Cloud, etc. More-
over, since SONM is fully decentralized, there is no single authority that regulates computing resource distribution.

SONM has a hybrid architecture, and therefore supports any kind of computational task without facing Ethereum’s
“out of gas” problem.

From a technical point of view, SONM is a top layer of underlying P2P technologies – btsync for data transfer,
Cocaine open source PaaS technology as a decentralized computing platform, and Ethereum Smart Contracts as
a consensus system.

There is no central control behind the system and no backdoors or escape hatches. Several existing technologies
were combined and modified by our developers to make new SOSNA technology.

In terms of providing distributed value for investors, SONM uses its own token SNM, based on Ethereum’s block-
chain. (click to read SONM token description in Business Overview).

Almost every online service needs computational power for their product, including websites, online shops,
MMORPGs, companies using large databases, and apps. Everyone in the world using the internet for business will
have an option to use SONM’s tokens in order to solve their computing power issues. Moreover, all internet users
will be able to use SONM to receive passive income by providing their computational resources for rent.

This disruptive migration from centralized cloud computing to decentralized fog computing will not happen quick-
ly: it will be a long transition, but the results will be positive. SONM token price calculations show decent ROI for
the project’s early adopters.

SONM token price is supported by stable market demand for computing power and ability to provide more com-
petitive prices than traditional cloud computing services. SONM token holders earn a percentage from transac-
tions and operations fees (buy-sell-develop). It is a direct analogue of holding shares and receiving dividends from
operational profit.

If you are a miner or computational power owner, SONM is a great resource of using your equipment for calcula-
tions and processing real tasks.

SONM fog computing platform is a fresh start for solo mining. There are lots of miners with GPU mining farms
that have become useless due to the increased Proof-of-work mining difficulty (even for altcoins). In recent years,
being a part of a mining pool has been the only way to guarantee profit from mining. But even in the process, this
profit is so small that it often does not cover the cost of electricity spent for PoW mining.

https://en.wikipedia.org/wiki/Fog_computing
https://tech.yandex.com/cocaine/
https://tech.yandex.com/cocaine/
http://sonm.io/Sonm-BusinessOverview.pdf

6

SONM platform is the efficient solution for miners. (click to read chapter Goverance in BO)

With SONM you will stop burning your kilowatts for PoW mining and start serving calculations for everyone
in the network. For those who are confused by the difficulty bomb or Ethereum (and many others) PoS-mi-
gration - each miner is suggested most profitable applications and tasks for their hardware. CPU, GPU,
ASIC, and even gaming consoles and smartphones can be used for SONM fog computing. All you need to
do is to set up a mining client application and run it.

SONM is a Multi-agent system, so each user will able to use intelligent agents and smart-contracts to
maximize profit. You can set your automatization level by choosing each project manually with one-click
settings. The SONM system will then automatically pick the most profitable project for your equipment,
work with it and receive payouts to your personal Ethereum address.

SONM is easy to setup and use, both for miners and computing power buyers. There is no need to
have advanced IT skills or to hire an IT specialist if you use SONM — our self-learning system finds the
most profitable task for miner’s equipment (and vice versa for buyers). The network also runs this task
with no need to set up and support a dedicated server.

SONM is Self-learning and totally safe for its users. Our system supports anonymity tools like proxy,
VPN or TOR, but it can’t be used as a hacker dream toolkit. Intelligent agents are able to self-educate using
neural networks and keep malicious users out of the system, while at the same time providing the most
efficient task solution - both for miners and computational power buyers.
SONM computing power exchange is the free market, so malicious hubs and users will shortly be ignored
by buyers and miners due to their bad reputation. (link to 2.9 Safety and Security)

We expect SONM to be the smartest, cheapest and largest decentralized computing system with strong
rules regarding morality and loyalty. This is largely due to SONM’s reputation system and self-learning
intelligent agents.

 SCHEME OF THE NETWORK

Worlds
Hubs

Servers

Miner Miner

Buyer Buyer Buyer Buyer Buyer BuyerBuyer

Miner Miner

http://sonm.io/Sonm-BusinessOverview.pdf

7

1.2. SONM Use Cases
We have experience with the limitations of BOINC itself – it is scientific software and supports only C++/
FORTRAN/Python, therefore it is not flexible. We started using more advanced solutions like Cocaine and
Docker container (which support more languages, including Java, Node.js, Go and etc.) We decided that
we will go the other way, and will focus more not just on the distributed calculations field like BOINC does,
but more on fog computing. This way, we can build a more universal platform not only for scientific calcu-
lations. The flexibility of the SONM platform and its multi-purposeness is knit to PoE for non-deterministic
task which is a unique technology owned by SONM (Proof of Execution).

1.2.1. Scientific projects
SONM network can be used to run essential scientific calculations requiring massive computing
power, for example:

- drug development

- modelling

- meteor trajectory modelling

- bioinformatics

- aerodynamic calculations

- social statistics

- climate prediction

1.2.2. Site hosting
The SONM network can be used to host websites without depending on centralized cloud services (AWS /

Azure / Google Cloud etc) or hosting providers. We use Cocaine open source PaaS technology
to implement virtual machines recognized as servers, with IPFS and other decentralized data
storage solutions as an underlying layer.

Website owners can also use our code snippets on their websites to collect payments in SONM or Ether
tokens and automatically pay for hosting, according to market value.

It is important to look into TOR operation (The Onion Router). TOR uses pseudodomains .onion, domain
names look like this http://o3shuzjrnpzf2aiq.onion/

Domain names in the .onion domain are generated based on an open random key server and consist of 16
symbols. These websites are actually not websites at all, but are in fact so-called hidden services. SONM
is going to implement such services, of which one application could be hosting websites. Storage and
operation will be decentralized.

Realization will be in the form of free access to service data from the internet, or similar to the TOR sys-
tem, limiting the access. The structure of the service depends directly on the application running in the
container.

In the address bar the service may look like name,site.sonm or probably just %name%.sonm (which would be
the name of the service that finds a hidden node using the locator and loads the website). This can be used for
additional identification of services on the SONM network and granting them additional properties.

1.2.3. Game server use-cases
There are lots of MMO games using in-game currencies. Our technology offers a solution for
deploying game servers in the SONM network. Furthermore, game currencies can be easily
exchanged for SONM tokens and back using our out-of-the-box solution. In addition, gamers
can support their favorite game servers by providing their computing resources in exchange for

tokens or in-game currency.

http://o3shuzjrnpzf2aiq.onion/

8

1.2.4. Neural networks projects
Neural networks are a powerful technology becoming more that has become more widespread
in recent years. Neuro-networking projects require massive computing power for their deploy-
ment, learning and tuning. SONM system provides a cost-efficient and effective solution for
neural network implementation.

1.2.5. Rendering video and computer graphics.
Rendering CGI can be distributed over the SONM network between a large number of computing
devices and can be processed very quickly (in a matter of minutes).

We provide much faster processing for Buyers’ (Clients’) CGI computing projects due to
SONM’s infrastructural flexibility. Compared to one K80 NVIDIA unit rental from Amazon (for example, for
10 hours), a buyer can use the SONM network to rent 600 K80 NVIDIA units with a total task processing
time of 10 minutes for each of them. It allows for use of more efficiently distributed architecture and par-
allel computing.

Unlike cloud computing services, SONM can provide buyers any rental time, any computing architecture
and any computing network structure.

1.3. Cost-efficiency for the end-clients
Using the SONM platform will provide beneficial conditions due to a few important factors:

‑‑ Lowering the bandwidth costs

‑‑ Willingness of miners to use their hardware

‑‑ The market will be saturated with new sellers of computational power, which will facilitate a
drop in prices

‑‑ The lack of centralized servers which require additional infrastructure costs to maintain

2. SONM TECHNOLOGY
Nowadays the popular Internet of Things concept[2] (IoT) gives way to the new emerging concept called
Internet of Everything (IoE).

Internet of Everything is the unification of all computing resources of humanity. It has core differences
with currently widespread centralized cloud computing technology.

In order to develop a system implementing this disruptive idea, the SONM team used the most efficient
and proven P2P, distributed computing and blockchain technologies.

SONM is not a monolith product, it’s a top layer built on underlying protocols and technologies: Ethereum,
btsync, Docker, Cocaine, etc.

(By the way, Bitcoin creator(s) also combined existing technologies (cryptography, P2P nodes network, git,
Proof-of-work concept, etc) to bring a brand new independent decentralized currency/payment system to
the world.)

https://en.wikipedia.org/wiki/Internet_of_things

9

2.1. IoE, IoT and fog computing
Before describing the future “World Computer” architecture we need to mention some details regarding
IoE, IoT and fog computing concepts.

Nowadays, the concept of Internet of Things (IoT) is commonly known. According to the IoT concept,
Thing is any natural or artificial object able to have an IP address and transfer data over the network.

Internet of Everything (IoE) represents further development of IoT concept: “Cisco defines the Internet
of Everything (IoE) as the networked connection of people, process, data, and things. The benefit of IoE
is derived from the compound impact of connecting people, process, data, and things, and the value this
increased connectedness creates as “everything” comes online.

IoE is creating unprecedented opportunities for organizations, individuals, communities, and countries to
realize dramatically greater value from networked connections among people, process, data, things[3].” This
definition emphasizes a very important aspect of IoE, which distinguishes IoE from IoT: namely, the so-
called “network effect”, formulated by James Macaulay from the Cisco IBSG consulting department.

The term “network effect” refers to a decentralization of organizations included in IoE. These kinds of de-
centralized systems are being developed by groups of so-called “crypto-anarchists” (people implementing
decentralized P2P systems using cryptographic methods[4]). A way to implement the IoT will be presented
in the form of our own operating system, built on CoreOS implementing SONM’s functionality. Any device
can support such a system and when connected, can act as a computational unit for the SONM fog.

Furthermore, in this document we are referring to decentralized organizations of computing machine re-
sources, and not decentralized human organizations. Most of the data in the current IoT state of develop-
ment is being processed by private centralized clouds - i.e. using cloud technologies, like AWS, Microsoft
Azure, etc.

Centralized cloud technologies have several weaknesses and can’t be used in IoE.

Some Things in IoE can create massive amounts of data. Cisco gives the example of the jet engine, which
creates about 10 Terabytes of its activity data in 30 minutes.

Transferring this data to the cloud, and receiving the results of data processing, requires adequate net-
work bandwidth, takes significant amounts of time and can have delays.

Furthermore, private centralized cloud systems potentially can be compromised, influenced from the out-
side, attacked or have failures, and also have lower computing power than fog computing solutions.

How can these problems be solved?

Fog Computing shifts the cloud computing paradigm and moves it to the lower level of the network.
Instead of processing some task using the cloud, we can use all the devices surrounding us: personal
computers, smartphones, even coffee makers and traffic lights.

Cisco’s Ginny Nichols originally coined the term Fog Computing. The metaphor comes from the fact that
fog is a cloud that is close to the ground, and thus fog computing concentrates processing at the edge
of the network. In Fog computing, data processing and applications are concentrated in devices at the
network edge rather than existing almost entirely in the cloud. That concentration means that data can be
processed locally in smart devices rather than being sent to the cloud for processing[5].

Thus, instead of centralized cloud solutions, we can use fog computing systems, getting the computation-
al power of every internet-connected device, with decentralization advantages like independence from any
centralized service and full protection against possible failures, etc.

http://internetofeverything.cisco.com/sites/default/files/docs/en/ioe_value_at_stake_public_sector%20_analysis_faq_121913final.pdf
https://en.wikipedia.org/wiki/Crypto-anarchism
http://internetofthingsagenda.techtarget.com/definition/fog-computing-fogging

10

2.2. World Computer
The so-called “computing fog” is the layer of computational resources able to process some kind of task.

However, aside from computing fog, the system also involves its users setting computational tasks, and
some middleware distributing these tasks among the fog resources, which then returns the result of the
calculations.

This system is called “World Computer”.

The first mention of the World Computer term was in Vitalik Buterin’s project Ethereum. It is implemented
using blockchain technology’s ability to include executable code into transaction blocks, so every miner’s
machine automatically executes this code.

Thereby, Ethereum in fact is the World Computer working like a Turing Machine[6], with blockchain used as
a state register tape.

This also implies that due to the fact that every program must be run on every machine in the Ethereum
network, it is very costly and only a limited range of tasks can be run using this platform.

TURING MACHINE

There are other projects which are developing a decentralized world computer (Golem, iEx.Ec and others).
It is important to note that all of them are being implemented using the same principles as Ethereum. They
also have the same problem: excessive parallelization leading to high costs of operations. This is caused
by the absence of any control centers managing task processing in real time that can stop it after receiving
the desired result. This in turn leads to running parallel / asynchronous processes.

In fact, these projects can’t provide the functionality which any usual personal computer has nowadays.

The SONM team has much experience developing a World Computer functional concept able to process
any task, up to the standard of a fully functional computer.

https://en.wikipedia.org/wiki/Turing_machine

11

SONM SCHEMATIC

P2P-message M-A-S e.t.c

2.4. World Computer General Architecture / Infrastructure
The architecture of a single computer is the presence of standard components such as CPU, Motherboard,
BIOS, Bus, Hard Drive, GPU, RAM memory, etc For our world computer architecture, we decided to follow
the modular way all the personal computers are built. World computer in the scheme has similar elements:
CPU, BIOS, bus for data exchange, plugins board (connectable devices), peripheral devices, graphics card, etc.

Hard disk drive analogue will be implemented using decentralized data storage solutions: IPFS (InterPlane-
tary File System), Storj, Sia, etc.

The first component of the system is the processor. SONM world computer’s processor is represented by
the set of independent hub nodes distributing tasks, assembling calculations results, keeping statistics
and providing uninterrupted operation of the system.Each hub node on the figure is equivalent to the pro-
cessor’s core (but is not equivalent to the processor). There can be an unlimited number of hubs, and they
can be easily included and excluded from the system.

Hubs do not process calculations directly, but rather they represent a very important part of the system,
providing management and support (just like a computer’s processor regulates and controls the operation
of GPU, and is able to process sophisticated high-loaded parallel computations). Hubs are implemented
using Cocaine ‘gateway nodes’.

The next element of the system is equivalent to a PC’s GPU. It is comprised of fog computing miners’ pro-
cessing tasks computations in the SONM system.

The communication bus for transferring data and messages in the network is represented by P2P commu-
nications module. (Bitmessage/Slave)

Buyers are equivalent to PC peripheral devices, usually used for information input.

12

The plugins board allows the system to constantly expand and gain power by connecting to external com-
patible networks, for example, any Grid network.

BIOS is an important part of the SONM system, represented by an Ethereum blockchain in our decentral-
ized computer model. As we mentioned earlier, Ethereum systems offer high reliability, but perform only
basic operations due to its architecture - this is why Ethereum is the most suitable candidate for the world
computer BIOS.

Finally, as we know, PC itself is not worth anything without an operating system. Our global computer also
requires an OS, and we have it ready.

2.3 SONM world computer implementation scheme
Consider the details of this world computer architecture implementation figure. As you can see, this archi-
tecture includes lots of linked elements.

Message flow

Data flow

Data flow

P2
P

m
es

sa
ge

 b
us

P2
P

m
es

sa
ge

 b
us

Clients

Plugins
inputs

Processor/HUB

BIOS/Blockchain

Miners fog

13

2.5. World computer’s Infrastructure as a service
(WC IaaS)
In the previous section we looked at the overall architecture of the system.

The infrastructure part of the system is handled by a messaging framework and a smart contract system
(Blockchain government).

2.5.1. Slave Messaging Framework
Currently, the messaging framework is represented by the Slave messaging protocol. (https://github.com/
cocaine/cocaine-core/wiki/protocol)

2.5.2 Slave API

Common types
Object ::= <Number> | <String> | <Tuple> | <Map>

Tuple ::= ([<Object> [, <Object>]...])

General format
Every message is a MessagePack-ed tuple of three fields:

ChannelID ::= <Number>

MessageID ::= <Number>

Message ::= (<ChannelID>, <MessageID>, <Tuple>)

Message ID is a service slot number you’re going to call. Every service has its own set of slots which can
be inspected by resolving this service via the Locator. Channel ID is a way to multiplex multiple data flows
inside a single TCP session. Channel ID is generated by the caller. Tuple is a slot-specific payload.

The usage of Slave will be covered more thoroughly in coming versions.

2.5.3. The smart contract system

2.5.3.1 Blockchain government
Blockchain government is an organization (speaking metaphorically) consisting of a court, a DAO, a regis-
try, a factory of enterprises (and an example of said enterprise).

The point of a blockchain government is to provide a simultaneous work process for all enterprises regis-
tered in such a system, motivating them to pay “taxes” to the DAO of a higher order, receiving court pro-
tection for their enterprise in exchange, as well as protection against unfair partners in the market. SONM
uses the following scheme for smart contracts to realize the pattern of a “blockchain government” :

https://github.com/sonm-io/Contracts-scheme

Smart contract prototypes can be found here: https://github.com/sonm-io/Forge

https://github.com/cocaine/cocaine-core/wiki/protocol
https://github.com/cocaine/cocaine-core/wiki/protocol
https://github.com/sonm-io/Contracts-scheme
https://github.com/sonm-io/Forge

14

PayoutApp

RegApp
(React.js)

HubWallet
Factory

Whitelist

DAO

migrations

HubWallet

Structure of contracts:

1. Migrations(Standard)

2. Sonm Token

3. DAO(Standard)

4. Hub wallet factory

5. Hub wallet

6. Whitelist prototype

7. RegApp (Simple React/Webpack App to work with hub registrations)

8. PayOut App (already implemented for DD@H project) https://github.com/sonm-io/drugdiscovery-token

Abstract

Outline of the smart-contracts system which will be implemented in SONM network is presented. More
info about network and contracts interaction can be found in the whitepaper

Simple Data flow

HUB
Before the hub starts paying out tokens to miners and receiving payments from buyers, it must create a
hub wallet — a simple contract with a fixed amount of frozen funds. If the hub is caught cheating, DAO can
initiate the process of blacklisting this hub and expropriate its frozen funds.

Those expropriated funds will also be frozen at the DAO account for some specified time. This is to protect
against malicious decisions of the DAO: tokens can drop in price during the freeze, therefore there is no
motivation to ‘raskulachivat’ (expropriate) every hub.

HUB FACTORY
Hub wallet can be created only by a Hub wallet factory (which is actually a simplified replication factory),
which creates a new hub wallet contract and registers it in the ‘whitelist’ contract.

https://github.com/sonm-io/token
https://github.com/sonm-io/token
https://github.com/sonm-io/Forge/blob/master/contracts/Hubs/HubFactory.sol
https://github.com/sonm-io/Forge/blob/master/contracts/Hubs/HubFactory.sol
https://github.com/sonm-io/Smart-dummy/tree/master/contracts/Hubs
https://github.com/sonm-io/Smart-dummy/tree/master/contracts/Hubs
https://github.com/sonm-io/Forge/tree/master/contracts/Whitelist
https://github.com/sonm-io/Forge/tree/master/contracts/Whitelist
https://github.com/sonm-io/drugdiscovery-token
http://sonm.io/Sonm1.pdf

15

WHITELIST
Whitelist contract is a registry contract containing info about hubs and their statuses. All hub wallets
created by hub wallet factory are registered in this contract. It is supposed to be a simple registry with a
special mapping for ‘trusted’ hubs. Initially, ‘trusted’ hubs will be checked by SONM developers manually /
official SONM hubs. Later, it’s supposed to be also a rating list — everyone could check the hub and rate it
(betting some amount of SONM tokens to prevent rating fraud).

REGAPP
As REGAPP we use the React.js application which is a simple web application (web-page) with the pur-
pose of a user friendly hub registration process.

PAYOUT APP
Payout App is an application to process miners’ token payout mechanism operations. For now it is imple-
mented to work with the BOINC statistic mechanism.

2.5.3.2 Example of usage of a ‘hub-wallet’ contract

Abstract
Before hub starts paying out tokens to miners and receiving payments from buyers – it must create a hub
wallet – a simple contract with a defined amount of frozen funds. If hub will be cheating – DAO could initi-
ate process of blacklisting this hub and expropriate frozen funds from it.

Those expropriated funds will also be frozen at the DAO account for some specified time. This is to protect
against malicious decisions of the DAO: tokens can drop in price during the freeze. Therefore, there is no
motivation to expropriate every hub.

Logic

Contract logic
The contract exists in 4 states - Created, Registered, Idle, Suspected (+Punished)

When the contract is created, the constructor function designates the addresses of the DAO, the factory,
the whitelist, the wallet owner and a few other variables, such as the length of the payout period (which is
currently set at 30 days). The payout period is a period of time during which the hub can conduct payouts
to miners, but cannot take the entire balance for itself.

In the Created state the contract can be registered on the whitelist, freezing a set amount on its balance
(1 SONM token). This is designed to circumvent a situation like this – the hub first deposits 0.00000001
SNM, registers the contract, and then deposits the main sum of 100 SNM – the first amount is fixed. Fur-
thermore, the time of registration is recorded when the contract is registered in the whitelist.

After the contract has been registered in the whitelist, it becomes Registered, in which state it has access
to the transfer , payday, suspect functions. Let’s take a closer look at them in order.

Transfer function
This function enables the contract to conduct payouts to the hub miners. It works as follows: first a lock Fee - is
designated, a percentage of the payout which will be locked for the payout period. The default value of it is 30%.
Then a limit is set (the total amount of frozen funds + the frozen amount from the registration + the percentage
for this particular transaction) and the balance is checked – if the balance is below the limit, this particular
transaction is not conducted, if everything is in order – the frozen percentage is added to the total amount of
frozen funds and the contract invokes the Approve function (details below) towards the miner. The explanation
of why the process is done this way is given in the PayDay portion of the description.

16

Approve function
This function does not move the tokens to the miner’s wallet, but permits the miner to conduct this trans-
action on his one. This prevents the hub from registering a wallet in the system while conducting the
payouts through a separate wallet because the miner is waiting for approval from this particular wallet.
Approve is a standard function. (standard ERC20).

PayDay function
This function sets the contract state from Registered to Idle. This function checks the registration time
against the current date and thus can be invoked only at the end of the payout period. If this condition is
met, it transfers 0.5% of the frozen funds to the DAO wallet, after which it unlocks all the frozen funds and
sets the contract’s state to idle. In this idle state the contract can move all the funds back to the owner’s
wallet or register the contract again in the whitelist. During the idle state the hub cannot conduct payouts
or be dismantled.

Thus, if the owner can move the funds from the hub to his personal wallet he can do so in two ways – do it
in accordance with the rules, wait until the end of the payout period, pay the DAO 0.5% of the frozen funds
and move the rest to his wallet; or he can cheat and move all the funds using the transfer function under
the guise of paying miners, but in this case 30% of all funds will stay frozen +1 SNM. Such a system moti-
vates the hub to act in compliance with the rules.

The contract also has the Suspected and Punished conditions. In the Registered state – the state when the
contract can be registered in the whitelist – the DAO and only DAO can invoke the suspect function, thus
setting the contract’s stats to suspected – suspected of being malicious. This function blocks all funds on
the contract’s wallet for 120 days.

In the suspected state the following functions can be invoked by the DAO exclusively:

Rehab function
This rehabilitates the hub, removes all fund freezes and set the contract state to idle. Can be invoked at
any time.

Ban function
This can only be invoked by the DAO committee after 120 days have passed since the contract’s state has
been set to suspected. Then all frozen funds of the contracts get sent to the DAO wallet, in which the con-
tract state is set to punished, and the owner of the contract is blocked from conducting further operations
using this wallet.

2.5.4 SONM Miner-Hub interaction solution
Let’s consider the process of SONM miners and hubs communicating when they need to establish mutual
cooperation (i.e., the first phase, when the miner hasn’t decided yet whether to participate in computations
and receive tasks from the hub or not).

First, SONM hub administrator sets up an Ethereum smart contract containing SONM tokens used to pay
miners for computations.

Then, the ethereum address of this smart contract, address of pool administrator and hub IP are recorded
on a special SONM smart contract “Hubs Pool List”.Hubs pool list includes unconfirmed (unverified) hubs
and verified hubs (i.e., listed in the hubs whitelist).

The whitelist will be managed by members in the Decentralized Autonomous Organization. In any
case, hub information in SONM smart contracts includes the address of the hub owner, the address of
the hub wallet and the hub IP. In case of IP or wallet address change, the hub owner can change the hub
record.

17

Therefore, SONM hub records the address of smart contracts containing the funds used to pay miners for
computations (so miners can check the existence of these funds) and registers basic information about
itself, including the address of the owner and IP.

Then, SONM hub agent starts broadcasting to the network using P2P messenger protocol, sending a
broadcast message about itself in the format: «IP, hub owner address, wallet address, hub name».

The agent on the miner’s side listens to the channel, receives data messages from the hubs, and then
makes a request to the Hubs Pool List smart contract to compare the data from the hub messages with
data in hubs whitelist. The miner may customize agent settings to accept messages from all servers or
only from proven ones listed in the Hubs Pool List.

After that, miner’s blockchain agent requests information about the contract-wallet of the hub, amount of
funds in the hub’s wallet and recent transactions of the wallet.

An intelligent agent checks the received data to compare it with conditions set by the miner. Are there suf-
ficient funds in the hub wallet? Are hub payments to miners regular? What is the average amount of tokens
paid to miners by this hub?

FLOWCHART OF “MINER-HUB” MESSAGES EXCHANGE:

HUB

IP, name, description,
wallet addres

Asks other mines
in the channel

about reliability of
hub

Hub list

Owner wallet, IP

Hub wallet

History

Hub list

Hub wallet

Checking that he is
registered in
blockchain

Checking that the
wallet exists and

transactions art being
carried out

Miner

Own table of hub’s
status

(trust/fake)

INTERNET P2P - MESSAGES BLOCKCHAIN

18

Then, P2P messenger agent send a direct message to the hub to request additional meta-data, and re-
cords full information about the hub in its hubs list with a “not confirmed” mark.

At the same time, the P2P messenger agent constantly broadcasts question messages to the common
miners’ data channel for information about the hub, the average amount of reward paid to them, and so on.
Other miners’ agents broadcast positive answer messages to the channel if hub information in the ques-
tion message is correlated with their information, or negative answers, if they believe this hub is malicious
or not reliable.

If a miner’s agent receives a sufficient amount of confirmations from the network, the hub receives
“checked” status in the miners’ hubs list. If the transaction received by the miner from this hub corre-
sponds to the original agreement, the status of this hub changes to “safe”.

After that, depending on the settings of miner’s software, a miner can either manually select a hub to con-
nect and perform computing tasks, or a miner’s agent can automatically select a hub offering maximum
profit and connect to it.

2.5.5 SONM Client-Hub interaction solution
Clients’ (buyer’s) interaction with SONM hubs is similar to the miner-hub agent’s interaction, with a differ-
ence in intellectual agent results’ parsing, which for buyers prefers the hubs with the lowest computations
price (and vice versa for miners). Buyers will most likely use the “Application Pool”, than “Hub Pool” smart
contract. Buyer creates a task and deposits funds to the hub’s smart contract wallet to pay for the job.
When the buyer receives the calculations result, he confirms the transfer of money using the smart con-
tract;s function (similar to Multisignature Wallet).

FLOWCHART OF CLIENT-HUB INTERACTION PROCESS:
(Some intermediate messages in the flowchart are omitted)

The raw file

Post a job offer,
 price, etc

Agreement

Search of application
software, the

calculation of power,
check the wallet

Hub creates the task of
downloading and calculation

of the parts of the file.
The parts of the file are
downloaded throught

Torrent, but not uploaded to
server. A new torrent is

generated instead it

The calculation of
intended costs,

registration in Torrent

Money is deposited in
the wallet of hub

User downloads
the file, money is
sent from deposit

BUYER P2P & BLOCKHAIN HUB’S & MINERS

19

2.5.6. SONM ‘Blockchain-government’ Expansion Policy
We previously looked at ways to implement the “blockchain-government” to work with the SONM system
using computational hubs as enterprises and miners as “workers”, but what if we go beyond the computa-
tional model and look that the current smart contract system in a broader sense?

What if we take a random business and try to apply it to the current system? Suppose you are an owner of
a restaurant – in which case you can similarly deploy a hub contract on the blockchain and register in the
whitelist, while carrying out your regular business transfers – receiving payments from clients and paying
your workers, but your bookkeeping will be relatively transparent for anyone, you will be under protection
by a DAO (a joint-share group of regular people which will resolve issues via voting),and your business will
be registered in the whitelist, similar to the governmental registry, giving your business a “Legitimacy certif-
icate” of sorts and giving you a competitive advantage.

Creating the “blockchain-government” system is not the priority for SONM, but as you may recall, SONM is
an assembly. We suppose that those interested in the system described above will register on the SONM
whitelist, thus executing the expansion plan for the “blockchain-government” into other markets and imple-
mentations.

2.5.7. SONM Client-Hub content delivery method
Content delivery method is the only significant difference between client-hub and miner-hub interactions.

As you might expect, there is no difference between rendering a 6-hour video using the local computer and
uploading this video to the server while waiting for video rendering on the remote server, because most of
the time will be spent on uploading.
We developed a solution for this issue:

When a client wants to upload a large file of raw data to the server, SONM automatically creates a torrent
and sends a message to the selected hub. This hub receives the message and creates a task sequence
for torrent downloading, computation work with downloaded file(s) and creation of a new torrent for calcu-
lation results file.

After processing the calculations and creating a torrent for the resulting data, the hub sends a message to
the buyer, who only has to download the received file from the miners.

We expect this to be the most rapid solution of all those that exist at the moment.

2.6. SOSNA in a nutshell
As a platform for SONM we propose using SOSNA – Superglobal Operation System by/for Network Architecture.
(look at the scheme on the next page)

2.6.1 What is SOSNA
SOSNA is a global operating system built on the nesting doll principle. It is important to understand the
structure of SOSNA in order to internalize this concept. Let’s go from the end-user application to out-
er-layer infrastructure. SOSNA itself is a top layer envelope that works with the Grid-core (BOINC, Yandex.
Cocaine/ Other grid-compatible PaaS) and the infrastructure of SONM smart contracts

2.6.2 Applications and containerization
When you are developing an application, you must make sure it’s will function properly that for the

20

end-user. But if the end-user’s computer does not possess the same amount of libraries as the one you
used during development, or they may not be up-to-date with vulnerabilities left, it may cause unexpected
results.

Is there any way to force the program to run exactly as it was intended, and at the same time make it run
safely for the end-user? For this, there are containers.

Containers allow us to run * any * software inside a secure, isolated environment. By itself, such a contain-
er is a miniature virtual machine, packed with all the dependency libraries of your system - so the compati-
bility problem and dependencies are relatively resolved. In addition, such a system is isolated in relation to
the host system, so no one can cause harm to the miner’s computer.

(link to 2.9 docker isolation)

SUPERGLOBAL OPERATION SYSTEM BY/FOR NETWORK ARCHITECTURE

SOSNA

Intercommunication Services

Grid Core

Master modules

Worker modules

Container

Message API

Blockchain API

21

2.6.3 Slaves & their services

Let’s move up one level.
Miner’s Host in this architecture is a simple node, a worker. (In cloud architecture such a system is called
Slave or Minion). All applications performed inside containers are called services. We will talk more thor-
oughly about what containers are in the SaaS chapter. The miner’s host itself can be definitively represent-
ed as an assembly of services and a service location system.

Service
Service is an actor, an RPC-enabled piece of code, which accepts a certain set of messages. Technical-
ly speaking, each service dispatches a service protocol — that is, a list of methods and their respective
SlotIDs you can call by sending messages to the service just after a connection has been established. This
protocol description can be dynamically obtained (along with other stuff) by resolving a service name via
the locator.

The important part here is that, in line with the actor model, the client is an actor too. So, after you
have sent a message to a service to do something for you, it responds by sending messages as well.
But unlike server-side services with service-specific protocols, every client dispatches the streaming
service protocol, mostly for backward compatibility and ease of use.

Each connection between a client and a service is multiplexed using ChannelIDs, and both ends of a given
channel dispatch some specific, possibly different, protocols. For example, the usual session between a
client and a service goes as follows:

‑‑ A client connects to some service and picks any channel at random (for example, channel #1),
because all of them are not used in the beginning. Initially the service side of a channel dispatches
the service-specific protocol, and the client side dispatches the streaming protocol.

‑‑ The client sends a message tagged with the chosen ChannelID in order to call one of the ser-
vice’s methods. That indicates the start of a session.

‑‑ The service switches its side of the channel to the null protocol, so that the client couldn’t call
some other method in the same channel while the service processes you request.

‑‑ The client starts to receive the streaming protocol Chunk messages with the service re-
sponse.

‑‑ In the end, the service sends a Choke message to indicate that the session has been complet-
ed and switches its side of the channel back to the service-specific protocol.

‑‑ If that was the only request, the client disconnects.

Note that some services provide streamable methods: in that case the service will switch to the streaming
protocol instead of the null protocol, so that you can stream some data to the service.

Locator
When a node starts, it reads its configuration file, which has a list of services to run. This list only specifies
service names and types, but not network-related properties, because the I/O layer and the RPC layer are
completely separate. Moreover, the services themselves have no code to communicate over the network,
only the message dispatching code.

22

In order to enable those services to receive and send messages over the network, the node starts a special
service called the locator. Every other service is attached to the locator, which in turn wraps them in an
event loop, binds them to some network endpoints and announces them in the cluster. The locator itself
always runs on a well-known port.

So, a client should perform the following steps to connect to the requested service:

- Connect to service locator on a public port.

- Send a Resolve message with the name of the required service using any channel.

- Receive a Chunk message with the information about the service endpoint, its protocol ver-
sion and its dispatch maps (which is a mapping of message numbers to method names).

- Receive a Choke message indicating that the request has been completed.

- Connect to the specified endpoint and work with the requested service.

Services can stack protocols. For example, the Elliptics service implements both the generic storage proto-
col and its own specific protocol, which means that a client requesting storage service can be routed to the
Elliptics service instance. That is fine, because stacking allows the client to work with the Elliptics instance
without even knowing the service-specific protocol details — protocol messages have the same SlotIDs no
matter what service implements the given protocol and whether it uses protocol stacking or not.

2.6.4 Masters and Gateways
Let’s advance one layer higher. Here you can see that in addition to the miner machine itself, there is a
master machine, i.e. Hub, the approximate function of which we considered in the paragraph about IaaS.

Master
Master manages the execution of services on the machines of miners, maintains statistics, balances the
load, carries out the validation of results, leads the task planner, etc. - i.e. Behaves like a conventional cryp-
tocurrency pool. Master is also called a Gateway node.

Gateway
Optionally, the locator can be configured to aggregate other locators’ multicast announcements (or use a
provided list of remote nodes) and act as a cluster entry point for clients. In other words, the aggregating
locator job is to configure a gateway by connecting with all the remote nodes and monitoring their health
and service updates.

Gateways are pluggable locator modules which provide remote location functionality. For example, a sim-
ple builtin Adhoc Gateway randomly picks a remote node for each client, and IPVS Gateway operates on a
kernel IPVS load balancer to set up a local virtual service for each available service in the cluster.

Clients can use these aggregating locators to access every service in the cluster regardless of their physi-
cal location in a load-balanced fashion.

2.6.5 Grid - Core
Two machines - Master & Worker form a basic implementation of the Grid standard - a loosely coupled
computing network. A key feature of the Grid standard is the prerequisite for decentralization and geo-
graphic remoteness of Masters from Workers. As an example, we consider the product https://github.
com/cocaine/cocaine-core as an example of Grid-Core.

https://github.com/cocaine/cocaine-core
https://github.com/cocaine/cocaine-core
https://github.com/cocaine/cocaine-core

23

2.6.6. Intercommunication Services
SOSNA intercommunication services are a common p2p message bus, with which miners, hubs and
clients communicate, as well as the Blockchain API service, which allows SOSNA to communicate with
Blockchain.

2.7. World Computer SaaS and its API
Example of the simple application that can be run on SOSNA

#!/usr/bin/env python

from cocaine.services import Service
from cocaine.worker import Worker

storage = Service(“storage”)

def process(value):
 return len(value)

def handle(request, response):
 key = yield request.read()
 value = yield storage.read(“collection”, key)

 response.write(process(value))
 response.close()

Worker().run({
 ‘calculate_length’: handle
})

2.8. Results verification
The problem of validating computations executed by a third party is a thoroughly researched topic [7] [8],
but it still lacks production-ready solutions, since most of them are very expensive in practice (at least in
an HPC setting).

More practical solutions are based on repeating computations – verification by replication. This approach
requires designated nodes (hubs) to distribute work units, aggregate results and verify them. Docker uses
this approach and has a highly tested implementation.

For certain kinds of computational problems it may be practical to offload the task of aggregation and
verification to a smart contract. The process goes as follows: miner computes some work unit and posts
merkle-tree root hash to the smart contract. Some other miner computes the same work unit and notic-
es that results differ. In this case, it is possible to calculate a compact proof of cheat. The proof can be
checked by the smart contract, and the cheater punished.

Economic motivation is used to promote this double-checking behavior: miners deposit some fixed
amount of tokens, and this deposit will be returned after some timeout if no proof of cheat was posted. On
the other hand, it is possible to earn tokens by checking computations and revealing cheaters.

24

Verification by smart contracts is actively researched [9][10] and has some benefits:

‑‑ does not require trusted third party to aggregate and verify results

‑‑ does not impose any overhead in case of honest miners

‑‑ has limited and bearable overhead in case of dishonest miners

Notes:
We will have a fully functional system that will be used for any general-purpose computations, starting
from the v.2.0. It is most likely that by this stage the SONM platform will have full-scale computational proj-
ects deployed with high turnover volume.

(link to chapter 3. Roadmap)

Moreover, by the v.2.0 we expect SONM to attract lots of open-source community members, which means:

‑‑ The community will be independently creating lots of decentralized grid-compatible apps.

‑‑ Lots of brand new markets and teams are potentially going to appear, as well as numerous
community-crafted tools for interaction with the SONM platform, most likely better than the
original apps, developed by the SONM team. For example, the official geth Ethereum client
made by Ethereum Foundation comparing to Parity by EthCore, or Windows Media Player
compared to WinAmp or Internet Explorer comparing to Mozilla Firefox. We understand and
welcome it.

That means that starting from this point we will need to reduce our efforts for tools development and give
way to the free market and community.

We will focus on creating new formations for interaction with this market:

‑‑ a dedicated team developing decentralized computational power exchange

‑‑ teams providing server hosting services based on the SONM platform

‑‑ software for niche markets

‑‑ various integration projects

‑‑ external formations for tools development (like Metamask.io by ConsenSys)

‑‑ I.e., by this point we will have a distinct division of SONM development areas. For example:

‑‑ original SONM core developers are creating basic protocols of the system

‑‑ another team is creating apps within smart-solutions

‑‑ SONM ExChange team is building UI-friendly tools for the interaction with buyers and manag-
ing the decentralized exchange

25

2.9. Safety and Security
Docker isolation.
One of the docker’s software packages is a daemon - which consists of a container server,launched via the
“docker -d” command), client tools which permit the user to control the modus and containers directly via
the command line interface and an API which permits the user to control the containers via a REST-style
program.

The daemon provides a complete isolation for the containers launched on the node at the file system level
(each container has his own root), at the process level (the processes have access permission only for the
container’s own file system and the resources are split up usign libcontainer), at the network level (each
container has access exclusively to the range of network names tied directly to it and the corresponding
network interfaces).

2.10 AI implementation
Our system solves Combinatorial optimization problems (https://en.wikipedia.org/wiki/Combinatorial_op-
timization), for example,

The Knapsack problem (https://en.wikipedia.org/wiki/Knapsack_problem) and the Travelling salesman
problem (https://en.wikipedia.org/wiki/Travelling_salesman_problem). These problems are NP-incomplete,
so we have a basic implementation of a weak-class AI.

The Knapsack problem is solved in the context of ‘miners briefcase’ - how to divide resources between dif-
ferent projects/hubs, with maximal profit and risk diversification. Put simply, it would be like “What coins
do I need to mine if btc goes down and in what proportion for each of it?”

The Travelling salesman problem is solved in the context of resource distribution and backs to GRID-net-
work standards (this feature is not fully implemented yet).

2.11. SONM GitHub repositories

github.com/sonm-io

2.12. UI and API
2.12.1. Example of how the SONM marketplace works
Market mechanisms.

One must remember that the end-user rarely interacts with the market directly, the market is mainly used
by owners of hubs, miners or developers.

An overview of the marketplace from the viewpoint of the Buyer (Developer).

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://github.com/sonm-io

26

Client-hub point of view:

1. Hosting applications
This is represented by a standard market mechanism functioning as a cloud market: an aggregator, where
users can choose the cluster to host their applications. The cluster is chosen depending on the preferenc-
es of the client : region, pricing, power, etc. The system basically functions like the market.

This diagram represents a simple market mechanism, where a developer picks a cluster where the app will
be hosted (a few clusters can be chosen).

2. Selling utility services
A developer, which has created a utility service, can sell it or delegate it to hubs, collecting passive income
via it. An example of such a service can be SUBD, a messenger service which is registered in the Applica-
tion Pool and is offered to hubs. Hubs can be interested in using said application to attract more clients
and gain advantage over their market rivals, which leads to market growth. The developer can view the
service statistics in his personal account.

An overview of the marketplace from the viewpoint of the Worker (miner)

Hub-miner point of view:
Miner, according to his preferences, automatically, according to set criteria, connects to the hub which
mays the most and has the most stable bandwidth. As such there is a market here as well – on one side
there is the computational power, on the other – money, but this market is almost entirely automated and
unnoticeable to the miner (the system was designed to let the miner simply press a button and not monitor
the rest of the process).

To summarize:
For the client everything is easy – his application will be run on the closest miner. This means that for the
end-user the difference will be virtually unnoticeable. The client/owner will be paying less, and the applica-
tion will run faster.

On the technical level the application will first request the designated hub or the required amount of com-
putational power (in order to contact the locator service) for service, and if such a service is available, the
application will request it to be performed on the closest machine available (which will accordingly be the
cheapest option).

2.12.2. Interface prototype

SONM buyers interface prototype
Pre-purchase computing power

‑‑ Hardware selection

‑‑ Application from Application Pool selection

‑‑ Search for applications/hardware

‑‑ Servers selection

‑‑ Command line (Terminal interface) for running own application, setup running application on
the server, before it is sent to miners nodes

27

SONM miners interface prototype
‑‑ Select applications to run on the nodes (whitelist, reputation level , or any depending on price)

‑‑ Setup number of tokens for unit of computing power (FLOPS, time)

‑‑ Setup disk space allocation limits and price for it (can be used own space, or purchased from
other integrated services, like Oraclize, Factom, Storj, Sia, Filecoin etc.).

2.12.3. API for software developers
In the first stages developers’ API will be implemented using widespread and well-tested Yandex, Cocaine
and Ethereum API.

In the further stages of platform development, after the system core upgrade to v.2.0, we’ll create propri-
etary SONM API.Top-level api, which defines the logical grouping of containers, which allows you to define
container pools, distribute the load, and also specify their placement.

Username

PRE-PURCHASE COMPUTING FORM
APPLICATION FORM

Application pool selection

SELECT APPLICATIONS TO RUN ON THE NODES

SETUP NUMBER OF TOKENS FOR A UNIT OF COMPUTING POWER

Servers selection

Search applications/hardware

Application

Flops: Time: 00.00

SETUP DISK SPACE ALLPCATION LIMITS AND PRICE FOR IT

Allocation limits: Price: BTC

COMMAND LINE OPTIONS
> _

ОК

Username

PRE-SELLING COMPUTING POWER FORM
APPLICATION FORM

SELECT APPLICATIONS TO RUN ON THE NODES

*white list reputation level or any depending price

*can be used own space or purchased from other inegrated
services

SETUP NUMBER OF TOKENS FOR A UNIT OF COMPUTING POWER

Application

Flops: Time: 00.00

SETUP DISK SPACE ALLPCATION LIMITS AND PRICE FOR IT

Allocation limits: Price: BTC

ОК

SONM BUYERS INTERFACE SONM MINERS INTERFACE

http://www.oraclize.it/
https://www.factom.com/
https://storj.io/
https://sia.tech/
http://filecoin.io/

28

3. DEVELOPMENT ROADMAP
3.2. Modules’ implementation roadmap:

Smart-contractsPlatformSOSNA coreMessagingVer.

PresaleToken, Presale,
“Forge”

Yandex.Cocaine-Slave Protocol0.1

ICO, TokenPayoutProto--0.2

DAODebug + Cutting off
Yandex pitfalls.

Waiting for
contracts’ deploy-
ment. Interaction
protos

Bitmessage
‘slave’ protocol
implementation

0.3

“Forge” debugPayout DappBusiness logic
implementation
(including price
API)

Sonm hub DNS
reconstruction,
additional mes-
saging types and
channels’ specifi-
cation, debug

0.4

Whitelist, Hub wallet,
Hub Factory

DCFS (etcd, Swarm,
IPFS) integration

Interaction with
p2p message bus
& ethereum block-
chain API

Debug and feed-
back

0.5.

BugFix + EscrowLocator service im-
provement.

Graphic UIGlobal channels
and Global DNS
improvements.

1.0

Debug & feedbackBugFixDebug & feed-
back

Debug & feed-
back

1.1

 Debug & feedback 1.n

 2.0

CoreOS(https://coreos.
com/)

29

 v.0.1 Current Version
Yandex. Cocaine as a platform, Docker as an isolation.

Supported languages:

‑‑ C++

‑‑ Go

‑‑ Java

‑‑ Node.js

‑‑ Python

‑‑ Ruby

‑‑ [In development] Racket

We have the following services:

‑‑ Logging

‑‑ Node-local file storage

‑‑ MongoDB storage

‑‑ Elliptics storage

‑‑ Node-local in-memory cache

‑‑ Distributed in-memory cache

‑‑ URL Fetch

‑‑ Jabber

‑‑ [In development] Notifications

‑‑ [In development] Distributed time service

Prototypes of the smart-contracts system (“Forge”), Slave protocol for communication between nodes.

Anyone can create his own hub and try to collect powers from miners, or create his own cluster (from
many owned machines). Anyone could run any usual docker container on it or create your own application
in Cocaine framework (see sections above or github).

v.0.2 - 1 month dev time
Main Token Contract and ICO application. Payout proto (already implemented for BOINC-platform “Drug-
Discovery@home.com”)

v.0.3 - 2-3 months dev time (about a month of which will be spent on organizational issues).
On this version (if we get enough money) we will focus on the most crucial parts of the system. For now
the slave protocol is literally ‘protocol’ - it has no own libraries or API, it’s just an agreement inside the mod-
ule system. We need to rewrite it using modern p2p messages core, like bitmessage, to get a good looking
messaging standard.

On the platform level it is will be PayOut dapp - a simple dapp which allow hub administrator payout tokens
to miners, depending on their work - it is already done for BOINC-like platforms such as“DrugDiscovery@

https://github.com/reverbrain/elliptics

30

home”. We need to simply adapt it to our newly deployed token contract and architecture of the Cocaine
gateway node.

On the smart contracts level it will work with our DAO contract.

v.0.4 - 5 months dev time.
In this version we will be adding new messaging types for new messaging systems, tuning the communi-
cation between miners and hubs. We will probably rewrite the internal DNS peer discovery service as well
(it allows the searching of peers during listening of the general channel in the messaging system).

Concerning the core platform we will work towards business logic (market and AI) implementation, and
tuning in messages and blockchain API.

On the platform level we will be implementing integration with DCFS like IPFS or Swarm.

On the smart-contracts level we will be finishing work on “Forge”.

v.0.5 - 2 months dev time
On this level all the newest contracts from “Forge” - Whitelist, HubFactory,HubWallet will be deployed. It will
be the start of forming real new homeostasis of the system. After that we think that a few “debug” releas-
es will be necessary with different community proposals.

v.1.0 - Postproduction (working out all the kinks for the release build) – 1 month dev time if no ma-
jor issues crop up.
The very first commercial version of this platform for public usage.

Global DNS and service locator improvements allow us to create a new internet browser, which would
allow everyone to find and run services like https://servicename.

Graphic UI improvements for each part of the system permit us to improve the user experience and start to
widely expand among ‘non-bitcoiners’.

We also believe that other companies will use our smart-contract’s organization (Forge), which would
allow them to use one contract-register and fair system protection from malicious users and fraud.

v.1.1

UX improvement, community proposals, feedback, debug, etc.

v1.n

Development of the new SOSNA version is started, which will be based on CoreOS (a system you could
literally run everywhere - microwaves and washing machines). Seriously, read about CoreOS - it is awe-
some!

v.2.0

Release of SOSNA 2.0. Imagine if your smart-watches from Apple could earn you money? That’s what we
are talking about - When “Time is money!” is not just words.

Notes:
We will have a fully functional system, able to be used for any general-purpose computations, starting from
the v.1.0. Most likely, by this stage SONM platform will have full-scale computational projects deployed
with high turnover volume.

https://servicename/
https://servicename/

31

Moreover, by the v.1.0 we expect SONM to attract lots of the open-source community members, which
means:

‑‑ The community will be independently creating lots of decentralized grid-compatible apps.

‑‑ Lots of brand new markets and teams are potentially going to appear, as well as lots of com-
munity-crafted tools for interaction with the SONM platform, most likely better than the origi-
nal apps, developed by the SONM team. For example, the official geth Ethereum client made
by Ethereum Foundation comparing to Parity by EthCore, or Windows Media Player compared
to WinAmp or Internet Explorer comparing to Mozilla Firefox. We understand and welcome it.

That means that starting from this point we’ll need to reduce our efforts for tools development and give
way to the free market and community.

We’ll focus on creating new formations for interaction with this market:

‑‑ a dedicated team developing decentralized computational power exchange

‑‑ teams providing server hosting services based on the SONM platform

‑‑ software for niche markets

‑‑ various integration projects

‑‑ external formations for tools development (like Metamask.io by ConsenSys)

I.e., by this point we will have a distinct division of SONM development areas. For example:

‑‑ original SONM core developers are creating basic protocols of the system

‑‑ another team is creating apps within smart-solutions

‑‑ SONM ExChange team is building UI-friendly tools for the interaction with buyers and manag-
ing the decentralized exchange

3.3. Dissemination of the development process
information

‑‑ The project team is responsible for making the results open to the public and for using all
available resources to disseminate information about the project.

‑‑ We willl publish a report about current development results and issues at least once a week.

‑‑ Report will contain current project needs and issues.

‑‑ All major breakthroughs will be communicated with interested mass media and spread in
major community forums like BitcoinTalk and CryptoCoin Talk.

32

4. SONM IN COMPARISON TO
OTHER GRID
COMPUTING PROJECTS
4.1. SONM in comparison to Golem Network
SONM has the following advantages compared to Golem:

Golem network hasn’t demonstrated any proof-of-concept yet. Golem network currently isn’t able to pro-
cess general purpose computing. Their network is available in the test mode only for CGI rendering.

Furthermore, SONM uses Cocaine open source PaaS platform which is compatible with a more common
and standardized BOINC platform, also used in lots of existing distributed projects, therefore SONM is
compatible with many of them.

Also, unlike BOINC, Cocaine platform support SaaS (Software as a service), widespread, modern and stan-
dard programming languages, isolated, safe and standard containers (Docker).

In addition, as we are developing SONM using a lot of open source technologies, we already have the core,
network platform and most of the other important features of the project, and, in fact, we are ahead of the
Golem project at least by two years of development.

Golem’s range of applications is still limited. At the moment, efficiently tested tasks in Golem are limited
only to rendering CGI in Blender.

Golem has less functionality. Golem represents the “peer-to-peer market” for computational resources.
SONM is a cryptographically secure protocol providing tasks distribution, validation of results and propor-
tional correct payment for the used computational power.

Validation of the computing results. The results validation system is one of the Golem project’s weak
points. Not all of the computations’ results are being validated, so Golem is depending on their reputation
system to prevent users from paying malicious miners for the wrong calculations results. This system is
potentially vulnerable and can be exploited.

SONM uses Docker verification system allowing to check all the received results for correctness.

4.2. SONM in comparison to iEx.Ec project
iEx.Ec uses its own XtremWeb-HEP protocol. It is similar to BOINC, but it has been tested less and has a
smaller community and support behind it.

Both in comparison with Golem and iex.ec we expect to get to the market faster due to usage of open
source technologies and protocols. We use widespread time-tested technologies, so we’ve already im-
plemented the core of the SONM system, most of its important functionality and we have the functional
prototype available for community alpha testing.

33

4.3. SONM in comparison to Elastic Project
Elastic team is anonymous. The project is being developed by the Elastic community, and there are no
team members showing their real identity. That way, in case of project failure, there is nobody to take
responsibility.

Elastic is an experimental non-commercial project. In fact, Elastic developers are good engineers, but they
lack marketing and PR, and don’t think about the commercial side of the platform and monetization. They
don’t have any financial model or a clear marketing plan, so the future price of Elastic tokens and project
market capitalization is very unclear. Also notable that Elastic had finished ICO crowdfunding more than
a year ago, but their tokens still aren’t listed on any crypto exchange, and ICO investors still don’t have
access to the tokens.

Elastic uses a transactions pool for tasks, a mechanism similar to that used by traditional blockchain
systems, such as cryptocurrencies. This leads to a serious problem: a transaction’s block must be con-
firmed in a certain amount of time, so a task must be processed in this certain time frame. In the case of
general-purpose calculations (for example, protein folding), we can’t know with certainty how much time
will it take to process the task.

Elastic uses its own programming language to solve this issue with a mechanism, similar to Ethereum,
which leads to excessive parallelism and the necessity to run the code on all machines in the network.

SONM uses a modified BOINC protocol, which was initially developed for volunteer grid computing and is
much more efficient for tasks distribution and processing.

4.4. Differences from GridCoin, FoldingCoin and
CureCoin
There are cryptocurrency projects such as CureCoin, FoldingCoin and GridCoin already involved in scientif-
ic distributed computing.

However, these projects use the white list selection for the scientific computing projects. They don’t have
and don’t create a computing power market.

In our project any buyer can purchase computing power for a task of any size and any seller can rent
computing power. Therefore, our main benefit compared to these projects is that SONM is not limited by
a specific project’s list. SONM will be an open decentralized secure computing power market available for
everyone. Also, SONM is fully compatible with these platforms, so once these projects start using SONM
infrastructure, one may be able to earn SNM and corresponding tokens (FoldingCoin, GridCoin, CureCoin
etc. also). In addition, SONM is compatible with Grid apps, so any of these apps can be run on our system.

4.5. Compatibility and integration with other
decentralized on-demand computing services
Although we have mentioned differences between Golem, Elastic Project, iEx.Ec networks and SONM,
pointing out some advantages of our project, we consider compatibility and possibility of these systems’
integration as a big advantage of the SONM network and as a promising means of computing power
usage optimization. Therefore, the goal is to create a global integrated computing platform, where SONM,
Golem, iEx.Ec and similar systems can be integrated together and computing power will flow toward the
most profitable and efficient system.

34

One of our project’s key goals is the development of intelligent, deep-learning based system, managing the
efficiency of computing power usage for solving specific tasks.

4.6 Comparison summary
wSONM is using the Distributed Cloud technology as its base, modifying said technology to fit our current
goals is a less work-intensive endeavor than combining Xtermweb-hep (base used by iEx) with traditional
Cloud services, due to Grid software being severely limited in that regard, and developing it to commercial
standards is very difficult and time-consuming. This is the reason SONM decided not to use BOINC, which
is one of the Grid software solutions, similar to Xtremweb-hep.

Having a prototype system for verifying undetermined computations gives a hefty advantage to SONM as
well.

Implementation time and flexibility in technologies used will be the deciding factor at the starting phase of
the project.

Currently SONM is looking to hire world-class specialists on P2P networks and locators (for optimization),
as well as people with experience working with BTSync and Tor Browser software.

5. REFERENCES
[1] https://en.wikipedia.org/wiki/Fog_computing

[2] IoT, https://en.wikipedia.org/wiki/Internet_of_things

[3] http://internetofeverything.cisco.com/sites/default/files/docs/en/ioe_value_at_stake_public_sec-
tor%20_analysis_faq_121913final.pdf

[4] https://en.wikipedia.org/wiki/Crypto-anarchism

[5] http://internetofthingsagenda.techtarget.com/definition/fog-computing-fogging

[6] https://en.wikipedia.org/wiki/Turing_machine

[7] Verifying computations without reexecuting them: from theoretical possibility to near practicality.
Walfish, Blumberg.

[8] Making Argument Systems for Outsourced Computation Practical (Sometimes). Setty, McPherson,
Blumberg, Walfish.

[9] Practical Delegation of Computation using Multiple Servers. Canetti, Riva, Rothblum.

[10] An Intro to TrueBit: A Scalable, Decentralized Computational Court. Simon de la Rouviere.

https://en.wikipedia.org/wiki/Fog_computing
https://en.wikipedia.org/wiki/Internet_of_things
https://goo.gl/3XDskU
https://goo.gl/3XDskU
https://goo.gl/iHMvns
https://goo.gl/uylhC3
https://goo.gl/i5L6tN

35

RedditSlackGoogle Groups

BitcoinTalkTwitterTelegram

GitHubFacebookMedium

FOLLOW US AND STAY TUNED

https://www.reddit.com/r/SONM/
https://sonmio.slack.com/
https://groups.google.com/forum/#!forum/sonm---supercomputer-organized-by-network-mining
https://bitcointalk.org/index.php?topic=1845114.0
https://twitter.com/SONM17369326
https://t.me/sonm_eng
https://github.com/sonm-io
https://www.facebook.com/SONM-Supercomputer-Organized-by-Network-Mining-954849207981204/
https://blog.sonm.io/@sonm

	Introduction
	1.1. What is SONM
	1.2. SONM Use Cases
	1.2.1. Scientific projects
	1.2.2. Site hosting
	1.2.3. Game server use-cases
	1.2.4. Neural networks projects
	1.2.5. Rendering video and computer graphics.

	1.3. Cost-efficiency for the end-clients

	2. SONM technology
	2.1. IoE, IoT and fog computing
	2.2. World Computer
	￼2.4. World Computer General Architecture / Infrastructure
	2.5. World computer’s Infrastructure as a service (WC IaaS)
	2.5.1. Slave Messaging Framework
	2.5.2 Slave API
	2.5.3. The smart contract system
	2.5.4 SONM Miner-Hub interaction solution
	2.5.5 SONM Client-Hub interaction solution
	2.5.6. SONM ‘Blockchain-government’ Expansion Policy
	2.5.7. SONM Client-Hub content delivery method

	2.6. SOSNA in a nutshell
	2.6.1 What is SOSNA
	2.6.2 Applications and containerization
	2.6.3 Slaves & their services
	2.6.4 Masters and Gateways
	2.6.5 Grid - Core
	2.6.6. Intercommunication Services

	2.7. World Computer SaaS and its API
	2.8. Results verification
	2.9. Safety and Security
	2.10 AI implementation
	2.11. SONM GitHub repositories
	2.12. UI and API
	2.12.1. Example of how the SONM marketplace works
	2.12.2. Interface prototype
	2.12.3. API for software developers

	3. Development roadmap
	3.2. Modules’ implementation roadmap:
	3.3. Dissemination of the development process
information

	4. SONM in comparison to other grid
computing projects
	4.1. SONM in comparison to Golem Network
	4.2. SONM in comparison to iEx.Ec project
	4.3. SONM in comparison to Elastic Project
	4.4. Differences from GridCoin, FoldingCoin and CureCoin
	4.5. Compatibility and integration with other
decentralized on-demand computing services
	4.6 Comparison summary

	5. References

