

PLUTON REWARD EMISSION
Plutus.it Yellow Paper - v. 1.0

Written by Danial Daychopan

7 December 2017

ABSTRACT: ​Initial design for Pluton reward emission was first set out in the white paper, however,
several practical factors have influenced its realisation. Here we highlight the relevant changes
that were necessary to make the reward system functional and ready for production.

1. Introduction
Pluton Yellow Paper outlines necessary
adjustments in the reward calculation and
finalizes the reward system in a way suitable
for production-ready implementation. To
incorporate new developments in Bitcoin,
Ethereum, and its markets, scaling
adjustments have been made to ensure the
longevity of the token.

Note that these adjustments are proportional
and simply account for more volume, and no
changes have been made to the fundamental
structure of the reward system. In essence,
this is simply to ensure that the behavior of
the token matches the expectations outlined
in the White Paper [1].

2. Pluton Token Infrastructure
Plutons (PLU) are defined as the internal
digital currency of Plutus and are issued on
the Ethereum blockchain at the Pluton
contract address [2] with 18 token decimals.
This also means that as a standard ERC20
token, the information necessary to
incorporate Pluton in any third-party
exchange or cryptocurrency service is publicly
available. And because Pluton is a fully
decentralized token, Plutus has no influence
on how Pluton is used outside of our software
system. (see Appendix-A: Source code for
Pluton smart contract)

Within Plutus itself, Plutons can be used to
converted into payments card and trades,
with the added benefits of free conversion
(0% Fee) and instant confirmations. In several
Plutus updates and publications, this is
usually referred to as ‘priority’ or ‘VIP’ due to
an emphasis on user-side convenience. Fees
when using Plutons are always 0% and will
remain that way throughout the platform.

For purposes of trading, charging a balance,
and other operations, Ethereum’s support for
near real-time confirmations (PoW: 1 Block /
~12 secs) makes practical applications
feasible.

The following source code implements
standard token functionality. Please note that
reward emissions will be handled by a
separate (funded) smart contract.

3. Pluton Ownership & Reward Emissions
Ownership of Pluton is tied to directly an
Ethereum address and its private key. Smart
contracts, running on the production
Ethereum-network (network-id 1), act
effectively as a trustless notary that tracks
token ownership, trades and transactions. As
such, it benefits from the distributed
computing and block-finding incentive model,
which ensures the integrity and security of the
ledger itself and that of its tokens.

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

The updated reward system has a scale from
30 to 150 BTC. This is proportional to the
scale of 5-25 used in the White Paper, albeit
adjusted for higher volumes. In the previous
calculator (assuming 5-25 BTC), each step
resulted in a 0.1 increase in volume and a
0.01% decrease in rewards. Whereas, in the
new calculations (now assuming 30-150 BTC),
each step results in a 0.1 increase in volume
and a 0.0165 % decrease in rewards

Similar to the whitepaper, a transaction in the
first 20% volume gets 3% reward. In the new
scale this translates to ≤ 30 BTC. To maintain a
healthy 120-150 years longevity, the required
BTC:PLU ratio is ~ 1 : 250.

4. Plutons Reward System

Plutus app users are rewarded Plutons for
every cryptocurrency (private wallet balance)
to fiat (Plutus contactless payments balance)
conversion made using the Plutus app or card.
However, as a logical consequence of reward
emissions, no reward occurs when making a
Pluton to fiat conversion. Pluton can be used
to charge a fiat balance immediately, without
any delays or conversion fees.

The reward system is a smart contract on
Ethereum network and triggered by the
PlutusDEX-contract. Only PlutusDEX-
contracts can trigger the reward system to
distribute the intended amount of Pluton to
app and card user(s) automatically.

Out of 20,000,000 total supply, 850,000
Plutons were distributed during the token
sale. Trading on the DEX network, under the
exchange rate, ​E​P​, will fluctuate according to
market conditions. Its value is determined by
the amount of Pluton, ​P​t​, ​required to trade for
one Bitcoin, or

EP = P t
1 BT C (1)

The DEX user (trader) will be able to buy
Plutons as well as Bitcoins and Ether. Pluton
rewards are limited to in app uses only, which
can be used to transfer to another user or
redeem using contactless payments balance
for in-store purchases. Pluton is implemented
as a ‘transferable fungibles’ i.e. sub-currency
on Ethereum [3]​ .

Since rebate rewards are only dispersed when
converting Bitcoin to fiat money we must
utilize the variable exchange rate of, E​BTC​,
Bitcoin to the British Pounds, expressed as

EBT C = 1 BT C
T GBPt

 (2)

Let ​T​i symbolize a single transaction by a
single user worth no more than a maximum
value of £30. Multiplying ​T​i by the variable
Bitcoin exchange rate yields the Bitcoin value,
B​i​, of the given transaction,

E T Bi = BT C * i (3)

where . ≤ £30T i

The reward rate, ​R​, changes every 24 hours, at
noon GMT, according to the previous day’s
aggregate Bitcoin transaction volume on the
PlutusDEX, ​V​Δ​, expressed as

V ∆ = ∑
n

i=1
Bi

∆ ​(4)

where the delta (Δ) in the superscript
refers to data from the previous day. As
seen above, the previous day’s aggregate
Bitcoin transaction volume is obtained by
summating each instance of equation (3)
on the previous day.

The reward rate, ​R​, is a dependent variable to
V​Δ by adapting and modifying the model of a
step function to a non-Boolean use. The
indicator function of ​R is defined as the
interval expression, , with the subscript, I

V ∆

V​Δ , of equation (4), which acts as the interval

2

https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIS
https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIS

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

parameter function of the next day’s reward
rate, defined by the expression

= I (R)R :
V ∆ (5)

The interval parameter function is defined by
the variable values of R​, which are dependent
on the corresponding range of the previous
day’s Bitcoin transaction volume, ​V​Δ​.

 ​(6)(R) = { R , m V ≤ M }I
V ∆ : i i < ∆

i

The reward rate, ​R​i​, in the above expression
represents the general structure of the
parameters that describe every possible value.
Each daily reward rate, ​R​i​, ​must differentiate
from the previous day’s rate, ​R​Δ​, by
±0.0165%.

Where each step is denoted by:

m .1 BT C i − M i = 0 ​(7)

The maximum reward rate is set at 3% when
the daily volume is 30 BTC or less and 1%
when the daily volume is 150 BTC or more.
Thus, each daily increase in volume of 0.1 BTC
will reduce the reward rate by 0.0165%, and
vice-versa.

Now that the reward rate, ​R, has been found
above, we can find the amount of Pluton, ​P​i for
one user’s single transaction by multiplying
the results of equation (1), equation (3), and
the current exchange rate, ​R​Δ​, to find

EP i = p * Bi * R∆ (8)

The reward rate has the delta in its
superscript to indicate that it was calculated
using the previous day’s Bitcoin transaction
volume as expressed in equation (5).

Finally, we can calculate the total Pluton
dispersed to users for an entire day, ​P​day​, by
summation of the results obtained from
equation (3) and equation (8) and simplifying
to obtain the emission equation:

(P)P day = R * ∑
n

i=1
i* Bi

Program steps for reward emission:
1. Aggregate transaction volume is

sampled every 10 minutes.
2. Aggregate transaction volume is reset

at 12.00 GMT. (Every 24 hours at
noon.)

3. When a transaction (buying of fiat) is
completed on the system, the Pluton
reward rate is calculated in real time
based on two inputs:

4. the current aggregate transaction
volume (volume calculated in last 10
minutes)

5. the current sampled market price of
Pluton

6. The real-time market price is based on
several exchange rates (ideally
weighted, similar to BTC and ETH).

7. After the reward has been calculated,
the Plutons amount is credited to the
user’s Pluton balance directly.

8. When the user chooses to withdraw,
the Plutons are transferred to the
user’s preferred wallet.

4. Pluton Reward Emission Calculator

For ease of use, the Pluton reward calculator
has been released. This web application lets
users estimate how many Pluton will be
emitted over time. A live version of the newly
updated Pluton reward calculator is made
available at the following link:

https://plu-calc-xvavrkviyp.now.sh/
(under development)

Enter different values on the right to explore
how Pluton will behave when making a
deposit. If the link is currently down, please
contact ​support@plutus.it​ or try again later.

Although, the calculator is initialised using
current market price for both BTC and PLU,
these fields accept speculative inputs from
users

3

https://plu-calc-xvavrkviyp.now.sh/
mailto:support@plutus.it

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

Sample real life scenarios calculated using
the calculator:
(a) User makes a deposit of 0.01 BTC, which at
a bitcoin price of $10,000 is $100. This
transaction incurs a fee of $3.

(b) Assuming PLU is $20 and the total volume
on the PlutusDEX is lower or equal to 30 BTC
(which sets the reward rate to 3% per
deposit), the user also receives a reward of
0.15 PLU.

5. Performance, scalability & reliability
Unlike MVPs, production systems need to be
robust and reliable while at the same time
deliver performance under increasing loads.
PlutusDEX uses high-performance
BlockCypher explorer nodes that not only
support the latest features of Bitcoin and
Ethereum networks but also facilitate
simultaneous or parallel processing of
transactions in both these networks. As a
result, the PlutusDEX is able to process 12
transactions per second, which is faster than
Bitcoin and matching the speed of Ethereum.
Since BlockCypher maintains several
blockchain nodes in a high-availability
architecture, they guarantee PlutusDEX can
scale with increasing number of users and
transactions with little or no changes to the
system configuration. With regards to
scalability changes in Bitcoin protocol,
PlutusDEX will support Segwit transactions
[4] .

The current transaction fee for Bitcoin starts
at $4-6 and even reaches $20, especially when
there is a huge backlog transactions waiting to

be confirmed. In such cases, small valued
transactions on our platform will become
prohibitive until wallets add native mainnet
Lightning network [5] support. Similarly,
Plutus will explore the use of Raiden network
[6] to reduce gas costs for Ethereum
transactions.

6. Conclusion

Here the changes to the initial Pluton reward
emission has been highlighted and discussed,
this included changes to scaling factor, design
changes, exploiting of 3rd-party services and
networks. In the next phase of software
development, these changes will be realised
and the community will be informed.

References:

[1] Plutus White Paper (2016). Available at:
https://plutus.it/public/white-paper.pdf​.

[2] Pluton Smart Contract. Available at:
0xD8912C10681D8B21Fd3742244f44658dBA122
64E

[3] Ethereum Foundation (2015) ERC-20 Token
Standard. Available at:
https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-20.md​ (Accessed: 28 February 2018).

[4] SegWit (no date). Available at:
https://en.wikipedia.org/wiki/SegWit ​(Accessed:
28 February 2018).

[5] Lightning Network (no date). Available at:
https://lightning.network/​ (Accessed: 1 March
2018).

[6] Raiden Network (no date). Available at:
https://raiden.network/ (Accessed: 1 March
2018).

4

https://plutus.it/public/white-paper.pdf
https://etherscan.io/address/0xD8912C10681D8B21Fd3742244f44658dBA12264E.
https://etherscan.io/address/0xD8912C10681D8B21Fd3742244f44658dBA12264E.
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://en.wikipedia.org/wiki/SegWit
https://lightning.network/
https://raiden.network/

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

GLOSSARY

Cryptocurrency​: Decentralized token, exclusively refers to Bitcoin, Ethereum, and Pluton at the
time of writing. May change in the future.

ERC20​: Ethereum Request for Comments. This is an official protocol for proposing
improvements to the Ethereum network. '20’ is the unique proposal ID number. ERC20 defines
a set of rules for standard blockchain tokens, making them easier to interact with and ensuring
portability.

DEX user or Trader:​ A buyer of cryptocurrencies on the PlutusDEX.

MVP​: minimum viable product or proof-of-concept application

PLU: ​Pluton, the loyalty rewards utility token of Plutus.

User: A user of the Plutus app and/or Plutus Debit Card. Typically owns cryptocurrencies
already.

APPENDIX - A Source Code for Pluton Smart Contract

/*

The Pluton Contract implements the standard token functionality

(https://github.com/ethereum/EIPs/issues/20) as well as the following OPTIONAL extras

intended for use by humans.

Pluton contract extends HumanStandardToken, https://github.com/consensys/tokens

.*/

contract Token {

 /// @return total amount of tokens

 function totalSupply() constant returns (uint256 supply) {}

 /// @param _owner The address from which the balance will be retrieved

 /// @return The balance

 function balanceOf(address _owner) constant returns (uint256 balance) {}

 /// @notice send `_value` token to `_to` from `msg.sender`

 /// @param _to The address of the recipient

 /// @param _value The amount of token to be transferred

 /// @return Whether the transfer was successful or not

 function transfer(address _to, uint256 _value) returns (bool success) {}

 /// @notice send `_value` token to `_to` from `_from` on the condition it is approved

by `_from`

 /// @param _from The address of the sender

 /// @param _to The address of the recipient

 /// @param _value The amount of token to be transferred

 /// @return Whether the transfer was successful or not

 function transferFrom(address _from, address _to, uint256 _value) returns (bool

success) {}

5

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

 /// @notice `msg.sender` approves `_addr` to spend `_value` tokens

 /// @param _spender The address of the account able to transfer the tokens

 /// @param _value The amount of wei to be approved for transfer

 /// @return Whether the approval was successful or not

 function approve(address _spender, uint256 _value) returns (bool success) {}

 /// @param _owner The address of the account owning tokens

 /// @param _spender The address of the account able to transfer the tokens

 /// @return Amount of remaining tokens allowed to spent

 function allowance(address _owner, address _spender) constant returns (uint256

remaining) {}

 event Transfer(address indexed _from, address indexed _to, uint256 _value);

 event Approval(address indexed _owner, address indexed _spender, uint256 _value);

}

contract StandardToken is Token {

 function transfer(address _to, uint256 _value) returns (bool success) {

 //Default assumes totalSupply can't be over max (2^256 - 1).

 //If your token leaves out totalSupply and can issue more tokens as time goes on,

you need to check if it doesn't wrap.

 //Replace the if with this one instead.

 //if (balances[msg.sender] >= _value && balances[_to] + _value > balances[_to]) {

 if (balances[msg.sender] >= _value && _value > 0) {

 balances[msg.sender] -= _value;

 balances[_to] += _value;

 Transfer(msg.sender, _to, _value);

 return true;

 } else { return false; }

 }

 function transferFrom(address _from, address _to, uint256 _value) returns (bool

success) {

 // same as above. Replace this line with the following if you want to

 // protect against wrapping uints.

 if (balances[_from] >= _value && allowed[_from][msg.sender]

>= _value && _value > 0) {

 balances[_to] += _value;

 balances[_from] -= _value;

 allowed[_from][msg.sender] -= _value;

 Transfer(_from, _to, _value);

 return true;

 } else { return false; }

 }

 function balanceOf(address _owner) constant returns (uint256 balance) {

 return balances[_owner];

 }

 function approve(address _spender, uint256 _value) returns (bool success) {

 allowed[msg.sender][_spender] = _value;

 Approval(msg.sender, _spender, _value);

 return true;

 }

 function allowance(address _owner, address _spender) constant returns (uint256

remaining) {

 return allowed[_owner][_spender];

 }

6

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

 mapping (address => uint256) balances;

 mapping (address => mapping (address => uint256)) allowed;

 uint256 public totalSupply;

}

contract HumanStandardToken is StandardToken {

 function () {

 //if ether is sent to this address, send it back.

 throw;

 }

 /* Public variables of the token */

 /*

 NOTE:

 The following variables are OPTIONAL vanities. One does not have to include them.

 They allow one to customise the token contract & in no way influences the core

functionality.

 Some wallets/interfaces might not even bother to look at this information.

 */

 string public name; //fancy name: eg Simon Bucks

 uint8 public decimals; //How many decimals to show. ie. There could 1000

base units with 3 decimals. Meaning 0.980 SBX = 980 base units. It's like comparing 1 wei

to 1 ether.

 string public symbol; //An identifier: eg SBX

 string public version = 'H0.1'; //human 0.1 standard. Just an arbitrary

versioning scheme.

 function HumanStandardToken(

 uint256 _initialAmount,

 string _tokenName,

 uint8 _decimalUnits,

 string _tokenSymbol

) {

 balances[msg.sender] = _initialAmount; // Give the creator all

initial tokens

 totalSupply = _initialAmount; // Update total supply

 name = _tokenName; // Set the name for display

purposes

 decimals = _decimalUnits; // Amount of decimals for

display purposes

 symbol = _tokenSymbol; // Set the symbol for display

purposes

 }

 /* Approves and then calls the receiving contract */

 function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns

(bool success) {

 allowed[msg.sender][_spender] = _value;

 Approval(msg.sender, _spender, _value);

 //call the receiveApproval function on the contract you want to be notified. This

crafts the function signature manually so one doesn't have to include a contract in here

just for this.

 //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes

_extraData)

 //it is assumed that when does this that the call *should* succeed, otherwise one

would use vanilla approve instead.

7

PLUTON REWARD EMISSION - Plutus.it Yellow Paper - v. 1.0

if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))),

msg.sender, _value, this, _extraData)) { throw; }

 return true;

 }

}

// Creates 20,000,000.000000000000000000 Pluton (PLU) Tokens

contract Pluton is HumanStandardToken(20000000000000000000000000, "Pluton", 18, "PLU") {}.

Also viewable on:

https://etherscan.io/address/0xD8912C10681D8B21Fd3742244f44658dBA12264E#code

8

https://etherscan.io/address/0xD8912C10681D8B21Fd3742244f44658dBA12264E#code

