
Factom
Business Processes Secured by Immutable Audit Trails on the Blockchain

Contributors: Paul Snow, Brian Deery, Jack Lu, David Johnston, Peter Kirby

Advisors: Adam Stradling, Shawn Wilkinson, Jeremy Kandah, Dexx, Marv Schneider, Steven
Sprague, Andrew Yashchuk

Reviewers: Vitalik Buterin, Luke Dashjr, Ed Eykholt, Ryan Singer, Ron Gross, J.R. Willett,
Dustin Byington

Version 1.2
April 25, 2018
factom.com

Abstract

“Honesty is subversive” - Paul Snow

In today’s global economy trust is in rare supply. This lack of trust requires the devotion of a
tremendous amount of resources to audit and verify records - reducing global efficiency, return
on investment, and prosperity. Moreover, incidents such as the 2010 United States foreclosure
crisis demonstrate that in addition to being inefficient, the current processes are also terribly
inaccurate and prone to failure. Factom removes the need for blind trust by providing the world
with the very first precise, verifiable, and immutable audit trail.

In the past, records have been difficult to protect, challenging to synchronize, and impossible to
truly verify because of the manual effort involved. Computers automated some of these tasks,
but they are even harder to protect, synchronize, and verify because computer records are so
easy to change. Authority is fragmented across innumerable independent systems.

Blockchains provide a distributed mechanism to lock in data, making data verifiable and
independently auditable. Bitcoin’s blockchain is the most trusted immutable data store in
existence; however, it is not very useful for non-Bitcoin transactions. Factom gives businesses
access to blockchain technology without getting bogged down in currencies.

In this paper, we describe how Factom creates a distributed, autonomous protocol to cost
effectively separate the Bitcoin blockchain from the Bitcoin cryptocurrency. We discuss
client-defined Chains of Entries, client-side validation of Entries, a distributed consensus
algorithm for recording Entries, and a blockchain anchoring approach for security.

1

http://factom.com/

Design Goals

Factom Creates a Faster, Cheaper, Bloat-free Way to Develop Blockchain Based
Applications

When Satoshi Nakamoto launched the Bitcoin blockchain he revolutionized the way transactions
were recorded. There had never before existed a permanent, decentralized, and trustless ledger
of records. Developers have rushed to create applications built on top of this ledger.
Unfortunately, they have been running into a few core constraints intrinsic to the original design
tradeoffs of Bitcoin.

1) Speed – because of the design of the decentralized, proof-of-work consensus method used
by Bitcoin, difficulty requirements are adjusted to maintain roughly 10 minute confirmation times.
For applications that wish greater security, multiple confirmations may be required. A common
requirement is to wait for 6 confirmations, which can lead to wait times over an hour.

2) Cost – the default transaction cost is around .01 mBTC (roughly $0.003 USD in November
2014, and as much as $80 USD per transaction at times in 2017). The exchange price of BTC
has been volatile throughout its history. If the price of BTC rises, then the cost of transactions
can go up. This can prove to be a serious cost barrier to applications that need to manage very
large numbers of transactions. Additionally, many factors including constraints on block size and
reward halving could act to increase transaction fees.

2

3) Bloat – with the Bitcoin blockchain size limit of 1 MB per block, transaction throughput is
capped at 7 transactions per second . Any application that wants to write and store information
using the blockchain will add to the traffic. This problem has become politically charged as
various parties seek to increase the block size limit and are met with resistance from those
concerned about decentralization.

Factom is a protocol designed to address these three core constraints. Factom creates a
protocol for Applications that provide functions and features beyond currency transactions.
Factom constructs a standard, effective, and secure foundation for these Applications to run
faster, cheaper, and without bloating Bitcoin.

The Factom Ecosystem
There are several primary components in the Factom ecosystem, as depicted below:

3

http://bitcoin.stackexchange.com/questions/18101/can-blocks-remain-capped-to-1mb-forever

Once the system is set up, including issuance of Factoids (i.e., the cryptocurrency of
Factom) and user accounts, token value is transferred among users, Factom, and
Bitcoin with the following primary interactions:

1. Application Owner purchases Entry Credits with Factoid
2. Application records an Entry
3. Factom Servers create Entry Blocks and Directory Blocks
4. Factom secures an anchor (hash of the Directory Block) onto the blockchain

Details of these and other interactions are in the upcoming sections.

Security and Proofs
How Factom Secures Entries

Factom extends Bitcoin's feature set to record events outside of monetary transfers. Factom has
a minimal ruleset for adding permanent Entries. Factom pushes most data validation tasks to
the client side. The only validation Factom enforces are those required by the protocol to trade
Factoids, convert Factoids to Entry Credits, and to ensure Entries are properly paid for and
recorded.

Factom has a few rules regarding token incentives for running the network and for
internal consistency, but it cannot check the validity of statements recorded in the chains
used by its users.

Bitcoin limits transactions to those moving value from a set of inputs to a set of outputs.
Satisfying the script required of the inputs (generally requiring certain signatures) is enough for
the system to ensure validity. This is a validation process that can be automated, so the auditing
process is easy. If Factom were used, for instance, to record a deed transfer of real estate,
Factom would be used to simply record the process occurred. The rules for real estate transfers
are very complex. For example, a local jurisdiction may have special requirements for property if
the buyer is a foreigner, farmer, or part time resident. A property might also fall into a number of
categories based on location, price, or architecture. Each category could have its own rules
reflecting the validation process for smart contracts. In this example, a cryptographic signature
alone is insufficient to fully verify the validity of a transfer of ownership. Factom then is used to
record the process occurred rather than validate transfers.

Bitcoin miners perform two primary tasks. First, they resolve double spends. Seeing two
conflicting transactions that spend the same funds twice, they resolve which one is admissible.
The second job miners perform (along with the other full nodes) is auditing. Since Bitcoin miners
only include valid transactions, one that is included in the blockchain can be assumed to have
been audited. A thin client does not need to know the full history of Bitcoin to see if value they
receive has already been spent. (See SPV .)

4

https://en.bitcoin.it/wiki/Thin_Client_Security#Simplified_Payment_Verification_.28SPV.29

How Factom Servers and Auditing Servers Validate Entries

Factom splits the two roles that Bitcoin miners do into two tasks: 1 - recording Entries in a final
order and 2 - auditing Entries for validity.

1 - The Factom servers accept Entries, assemble them into blocks, and fix their order. After 10
minutes, the Entry ordering is made irreversible by inserting an anchor into the Bitcoin
blockchain. Factom does this by creating a hash of the data collected over the 10 minutes, then
recording the hash into the blockchain.

2 - The auditing of Entries is a separate process which can be done either with or without trust.
Auditing is critical, since Factom is not able to validate Entries before they are included in the
Factom dataset.

With trust-based auditing, a thin client could trust a competent auditor they choose. After an
Entry was entered into the system, an auditor would verify the Entry was valid. Auditors would
submit their own cryptographically signed Entry. The signature would show that the Entry
passed all the checks the auditor deemed was required. The audit requirements could in fact be
part of a Factom Chain as well. In the real estate example from earlier, the auditor would double
check the transfer conformed to local standards. The auditor would publicly attest that the
transfer was valid.

Trustless auditing would be similar to Bitcoin. If a system is internally consistent with a
mathematical definition of validity like Bitcoin, it can be audited programmatically. If the rules for
transfer were able to be audited by a computer, then an Application could download the relevant
data and run the audit itself. The application would build an awareness of the system state as it
downloaded, verified, and decided which Entries were valid or not.

Mastercoin, Counterparty, and Colored Coins have a similar trust model. These are all
client-side validated protocols, meaning transactions are embedded into the Bitcoin blockchain.
Bitcoin miners do not audit them for validity; therefore, invalid transactions designed to look like
transactions on these protocols can be inserted into the blockchain. Clients that support one of
these protocols scan through the blockchain and find potential transactions, check them for
validity, and build an interpretation of where the control of these assets lie (usually a Bitcoin
address). It is up to the clients to do their own auditing under these protocols.

Moving any of these client-side validated protocols under Factom would be a matter of defining
a transaction per the protocol and establishing a Chain to hold the transactions. The transaction
protocols wouldn’t be much different under Factom than under Bitcoin, except where Factom
allows an easy expression of the information needed instead of having to encode it in some
special way into a Bitcoin transaction.

5

Proving a Negative

Bitcoin, land registries, and many other systems need to solve a fundamental problem: proving
a negative. They prove some “thing” has been transferred to one person, and prove that thing
hasn't been transferred to someone else . While proof of the negative is impossible in an
unbounded system, it is quite possible in a bounded system. Blockchain based cryptocurrencies
solve this problem by limiting the places where transactions can be found. Bitcoin transactions
can only be found in the Bitcoin blockchain. If a relevant transaction is not found in the
blockchain, it is defined from the Bitcoin protocol perspective not to exist and thus the BTC
hasn't been sent twice (double spent).

Certain land ownership recording systems are similar. Assume a system where land transfer is
recorded in a governmental registry and where the legal system is set up so that unrecorded
transfers are assumed invalid (sans litigation). If an individual wanted to check if a title is clear
(i.e., that no one else claims the land) the answer would be in the governmental registry. The
individual using the government records could prove the negative; the land wasn't owned by a
third party. Where registration of title is not required, the governmental registry could only attest
to what has been registered. A private transfer might very well exist that invalidates the
understanding of the registry.

In both of the above cases, the negative can be proven within a context. With Mastercoin the
case is very strong. With a land registry, it is limited to the context of the Registry, which may be
open to challenge. The real world is messy, and Factom is designed to accommodate not just
the precision of digital assets, but the real world’s sometimes messy reality.

In Factom, there is a hierarchy of data categorization. Factom only records Entries in Chains;
the various user-defined Chains have no dependencies that Factom enforces at the protocol
level. This differs from Bitcoin, where every transaction is potentially a double-spend, and so it
must be validated. By organizing Entries into Chains, Factom allows Applications to have
smaller search spaces than if all Factom data were combined together into one ledger.

If Factom were to be used to manage land transfers, an Application using a Chain to record
such registries could safely ignore Entries in the other Chains, such as those used to maintain
security camera logs. Were a governmental court ruling to change a land registration, the
relevant Chain would be updated to reflect the ruling. The history would not be lost, and where
such changes are actually invalid from a legal or other perspective, the record cannot be altered
to hide the order of events in Factom.

6

http://en.wikipedia.org/wiki/Evidence_of_absence
http://en.wikipedia.org/wiki/Recording_%28real_estate%29
http://en.wikipedia.org/wiki/Recording_%28real_estate%29

Nick Szabo has written about Property Clubs, which have many overlaps with this system. Here
is a nugget from his paper "Secure Property Titles with Owner Authority":

While thugs can still take physical property by force, the continued existence of correct
ownership records will remain a thorn in the side of usurping claimants.

How Applications Validate Factom Chains

Factom doesn’t validate Entries; Entries are instead validated client-side by users and
Applications. As long as an Application understands and knows the rules a Chain should follow,
then the existence of invalid Entries doesn’t cause unreasonable disruption. Entries in a Chain
that do not follow the rules can be disregarded by the Application.

Users can use any set of rules for their Chains, and any convention to communicate their rules
to the users of their Chains. The first Entry in a Chain can hold a set of rules, a hash of an audit
program, etc. These rules then can be understood by Applications running against Factom to
ignore invalid Entries client-side.

An enforced sequence can be specified. Entries that do not meet the requirements of the
specified enforced sequence will be rejected. However, Entries that might be rejected by the
rules or the audit program will still be recorded. Users of such chains will need to run the audit
program to validate a chain sequence of this type. The Factom servers will not validate rules
using the audit program.

Validation in the Applications (in combination with user-defined Chains) provides a number of
advantages for Applications written on top of Factom:

1. Applications can put into Factom whatever Entries make sense for their application. So,
a list of hashes to validate a list of account statements can be recorded as easily as
exchanges of an asset.

2. Rule execution is very efficient. Where the distributed network must execute your

validation rules, then validation requires all nodes to do all validation. Client-side
validation only requires the systems that care about those rules to run them. Factom
allows a Chain to define its rules in whatever language the designers choose, to run on
whatever platform they choose, and to use any external data. None of these decisions
on the part of one Application has any impact on another Application.

3. Factom Servers have little knowledge about the Entries being recorded. We use a

commitment scheme to limit knowledge, where the commitment to record an Entry is
made prior to revealing what the Entry is. This makes Factom’s role in recording Entries
very simple, and makes individual server processes public. Factom servers accept
information from the network of full nodes, and their decisions and behavior are always

7

http://szabo.best.vwh.net/securetitle.html
http://szabo.best.vwh.net/securetitle.html
http://en.wikipedia.org/wiki/Commitment_scheme

in view. Failure to perform can be audited both from the network outside Factom, and
within Factom. It is easy to independently verify that a Factom server is fulfilling its
Entry-recording responsibility; Factom can’t hide potentially errant behavior.

4. Recording speeds can be very fast, since the number of checks made by the Factom

servers are minimal.

5. Proofs against any particular Chain in Factom do not require knowledge of any other
Chains. Users then only need the sections of Factom they are using and can ignore the
rest.

How Factom Authority Servers Manage Chains

At its heart, Factom is a decentralized way to collect, package, and secure data into the Bitcoin
blockchain. Factom accomplishes this with a network of Authority servers. Authority Servers are
the set of Federated Servers and Audit Servers which share responsibility for different aspects
of the system. The Federated Servers actually acknowledge and order entries and transactions
in Factom, and Audit Servers duplicate and audit the work done by the Federated Servers and
are always ready to replace a Federated Server that might go offline.

The design ensures decentralization. No single server is ever in control of the whole system,
but only a part of the system. All servers verify and double check the work of all other servers.
And no server is permanently in control of any part of the system; the responsibility for each part
of Factom cycles among the Federated Servers each minute, and the role of being a Federated
Server or an Audit Server shifts among the servers in the Authority Set (the set of all Authority
Servers).

The Federated servers take a very active role in running the protocol. The Federated servers
each take responsibility for a subsection of the user Chains at the beginning of the creation of a
Directory Block. The process works like this:

1. All servers reset their process lists to empty.
2. The user submits an Entry Payment using a public key associated with Entry Credits
3. Based on the public key used to pay for the Entry, one of the servers accepts the

payment.
4. That server broadcasts the acceptance of the payment.
5. The user sees the acceptance and submits the Entry.
6. Based on the ChainID of the Entry, one of the servers adds the Entry to its process list,

and adds the Entry to the appropriate Entry Block for that ChainID (creating one if this is
the first Entry for that Entry Block).

8

7. The server broadcasts an Entry confirmation, containing the process list index of the
Entry, the hash of the Entry (linked to the payment), and the serial hash so far of the
server’s process list.

8. All the other servers update their view of the server’s process list, validate the list, and
update their view of the Entry Block for that ChainID.

9. As long as the user can validate the relevant process list holds their Entry, then they
have a fair level of assurance it will be successfully entered into Factom.

10. At the end of the minute, each server confirms the end of their section of the process list.
The end of the minute is marked in the process list, and the responsibility for particular
chains shifts around the authority set.

11. At the end of the 10th minute, a Directory Block is constructed from all the Entry Blocks
defined by the process lists built by all the servers. So, each server has all Entry Blocks,
all Directory Blocks, and all Entries.

12. A deterministic method (that can be computed by all nodes in protocol) will shift
responsibility for particular ChainIDs among the servers for the next round.

13. At the completion of the Directory Block, the Merkle root of the Directory block is placed
in a Bitcoin transaction and submitted to the Bitcoin network for eventual confirmation.

14. Repeat. (Go back to 1)

The Federated servers for their minute are constructing a process list for the Chains for which
they are responsible, as well as constructing the Entry Blocks that will be used to create the
Directory Block at the end of the 10 minutes. The process list is important for broadcasting
decisions made by a server to the rest of the network.

The servers in the authority set are are re-ranked on a regular, scheduled basis. The ranking is
a function of support by the standing parties, who must create a profile Chain in Factom. The
profile contains any number of signed public address Entries. The weight of a standing party’s
support is determined by various public addresses and entries in their profile. The function
computing the weight of a standing party uses a combination of many factors. Such weights
may be organized in categories to further distribute influence. Factors that determine an
identity’s weight include factors that can be measured from the protocol, and audited by the
protocol. Examples of factors that might be used to calculate weight include::

● Weighted Number of Entry Credits purchased.
● Weighted Number of Entries used .
● Tokens “staked” to a profile Chain, and not moved or transferred.
● Tokens used to build infrastructure, support the protocol, provide services
● Providing guidance and facilitating the operation of the protocol.

Support may be specified by the Standing parties at any time. At regular intervals, the support of
all the servers in the Authority set will be evaluated, and the membership of the authority set
adjusted. The same mechanism can be used to measure support in the protocol for decisions
about the protocol.

9

To maintain a position in the authority set, servers must continually demonstrate the ability to
maintain their ability to monitor and keep up with the operation of the protocol. The Federated
Servers do this by simply doing their job and syncing with the end of minute operations with all
other Federated Servers. Performance in the protocol’s ecosystem may also factor into
decisions to support or not support an authority node. Audit servers may have to issue a
heartbeat message, that can be monitored by the network. Other solutions are possible.

Managing timeouts and monitoring heartbeats will be done according to the needs and load on
the protocol.

Factom System Overview
Factom is constructed from a set of layered data structures

Factom is constructed of a hierarchical set of blocks, with the highest being Directory Blocks.
They constitute a micro-chain, consisting primarily of compact references. To keep the size
small, each reference in the Directory Block is just a hash of the Entry Block plus its ChainID.
These Entry Blocks have references which point to all the Entries with a particular ChainID
which arrived during a time period. The Entry Block for a Chain ID is also part of a micro-chain.
The bulk of the data in Factom is at the leaves, the Entries themselves. These hierarchical data
structures are rendered unchangeable by Bitcoin’s hashpower. They can be conceptualized as
different layers.

The layers and concepts in the Factom system are:

1) Directory Layer -- Organizes the Merkle Roots of Entry Blocks

2) Entry Block Layer -- Organizes references to Entries

3) Entries -- Contains an Application's raw data or a hash of its private data

4) Chains -- Grouping of Entries specific to an Application

Directory Layer: How the Directory Layer Organizes Merkle Roots

10

The Directory layer is the first level of hierarchy in the Factom system. It defines which Entry
ChainIDs have been updated during the time period covered by a Directory Block. (ChainIDs
identify the user’s Chain of Entries; the generation of the ChainID is discussed later.) It mainly
consists of a list pairing a ChainID and the Merkle root of the Entry Block containing data for that
ChainID.

Each Entry Block referenced in the Directory Block takes up 64 bytes (two 32 byte hashes, the
ChainID and the Merkle root of the Entry Block). A million such Entries would result in a set of
Directory Blocks roughly 64 MB in size. If the average Entry Block had 5 Entries, 64 MB of
Directory Blocks would provide the high level management of 5 million distinct Entries. Note
that the exact implementation of Directory blocks my vary as we build for greater scale in the
future.

If an Application only has the Directory Blocks, it can find Entry Blocks it is interested in without
downloading every Entry Block. An individual Application would only be interested in a small
subset of ChainIDs being tracked by Factom. This greatly limits the amount of bandwidth an
individual client would need to use with Factom as their system of record. For example, an
Application monitoring real estate transfers could safely ignore video camera security logs.

Factom servers collect Merkle roots of Entry Blocks and package them into a Directory Block.
Directory Block the Merkle roots are recorded into the Bitcoin blockchain. This allows the most
minimum expansion of the blockchain, and still allows the ledger to be secured by the Bitcoin
hash power . The process of adding the Merkle root into the Bitcoin blockchain we referred to as
“anchoring”. See the section “Appendix: Timestamping into Bitcoin” for further details.

Data entered into Directory Blocks is the most expensive, from a bandwidth and storage
perspective. All users of Factom wishing to find data in their Chains need the full set of Directory
Blocks starting from when their Chain began.

Activities that increase the Directory Block size include the creation and first update of individual
Chains. These activities externalize costs of Applications attempting finer-grained organization.

11

https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Proof_of_work

The Applications must be required to expend more Entry Credits than a simple Entry would
necessitate to discourage bloating the Directory Blocks.

Entry Block Layer: How the Entry Block Layer Organizes Hashes and Data

Entry Blocks are the second level of hierarchy in the system. Individual Applications will pay
attention to various ChainIDs. Entry Blocks are the place where an Application looking for
Entries can expand its search from a ChainID to discover all possibly relevant Entries.

There is one Entry Block for each updated ChainID per Directory Block. The Entry Blocks
contain hashes of individual Entries. The hashes of Entries both prove the existence of the data

12

and give a key to find the Entries in a Distributed Hash Table (DHT) network. (See the section
“The Factom Peer-to-Peer Network” for more detail.)

The Entry Blocks encompass the full extent of possible Entries related to a ChainID. If an Entry
is not referred to in an Entry Block, it can be assumed not to exist. This allows an Application to
prove a negative, as described in the section Security and Proofs.

The Entry Block intentionally does not contain the Entries themselves. This allows the Entry
Blocks to be much smaller than if all the data was grouped together. Separating the Entries from
the Entry Blocks also allows for easier auditing of auditors. An auditor can post Entries in a
separate chain that approves or rejects Entries in a common chain. The audit can add reasons
for rejection in its Entry. If an Application trusts the auditor, they can cross reference that the
auditor has approved or rejected every Entry, without knowing what the Entry is. The Application
would then only attempt to download the Entries which passed the audit. Multiple auditors could
reference the same Entries, and the Entries would only exist once on the Distributed Hash Table
(DHT). Entries are expected to be significantly larger than the mere 32 bytes a hash takes up.
Lists of things to ignore do not have to have the full object being ignored for an Application to
know to ignore it. The exact implementation of entry blocks may vary in the future in response
to identified improvements possible in the protocol.

An Entry detailing the specifics of a land transfer would be entered into a Chain where land
transfers of that type are expected to be found. One or more auditors could then reference the
hashes of land transfer in their own Chains, adding cryptographic signatures indicating a pass or
fail. The land transfer document would only need to be stored once, and it would be referenced
by multiple different Chains.

13

Entries: How Entries are Created

Entries are constructed by users and submitted to Factom. By hashing or encoding information,
the user can ensure the privacy of Entries. The Entries can instead be plain text if encoding or
obscuring the data isn’t necessary. By recording a hash of a document, Factom can provide
basic proof of publication. Presenting the document at a later time allows one to create its hash,
and compare it to the hash recorded in the past.

There is lots of flexibility in the data that is accepted. It can be something short like a hyperlink.
It could also be larger, but not too large, since fees limit the size of the data accepted. This is
similar to Bitcoin. Large 100 kB+ Bitcoin transactions are possible, but would need to pay a
proportionately greater transaction fee. This size, while gigantic in Bitcoin, would be moderately
sized for Factom. Since every Bitcoin full node needs the entire blockchain to fully validate, it
needs to stay small. In Factom, only the highest level Directory Blocks are required to fully
validate a Chain. If someone is not specifically interested in a Chain's data, they would not
download it.

Take a simple example of an uneditable Twitter-like system. A celebrity would craft an Entry as a
piece of text. They would then sign it with a private key to show it came from them. Followers of
the celebrity would find which Chain they publish in and would monitor it for updates. Any new
signed Entries would be recognized by follower's Application software as a tweet. Others could
tweet at the celebrity by adding Entries to the celebrity’s Chain.

14

Chains: How Entries are Organized into Chains

Chains in Factom are sequences of Entries that reflect the events relevant to an Application.
These sequences are at the heart of Bitcoin 2.0. Chains document these event sequences and
provide an audit trail recording that an event sequence occurred. With the addition of
cryptographic signatures, those events would be proof they originated from a known source.

Chains are logical interpretations of data placed inside Directory Blocks and Entry Blocks. The
Directory Blocks indicate which Chains are updated, and the Entry Blocks indicate which Entries
have been added to the Chain. This is somewhat analogous to how Bitcoin full clients maintain
a local idea of the UTXO (Unspent Transaction Output) set. The UTXO set is not (currently) in
the blockchain itself, but is interpreted by the full client.

15

https://bitcoin.org/en/developer-guide#term-utxo

The Factom Peer-to-Peer Network

Factom will have a peer-to-peer (P2P) network which accomplishes two goals: communication
and data preservation.

Factom Peer-to-Peer Communications

Factom will have a P2P network very similar to Bitcoin’s. It will consist of full nodes which have
all the Factom data. The full nodes create a gossip network which will flood fill valid data
throughout the network. The Authority servers would be full nodes, but not all full nodes are
Authority servers. This is very much like Bitcoin, where miners are full nodes, but not all full
nodes are miners. This will limit the ability to DDOS the Authority servers individually. They can
connect anywhere inside the network to acquire the data needed to build the data structures.

As the servers are coming to consensus and disseminate their signed data, they would publish
the data over the P2P network. The P2P flood filling also limits the ability of Authority servers to
censor based on IP addresses, since valid traffic is mixed together by the nodes they connect
to. It also helps to prevent censorship, since all servers can see the Entries which should be
included in the Entry Blocks. Outside organizations campaigning to become Authority servers
have an incentive to bring bad behavior to light, so they can gain support and move up into the
set of Authority Servers.

Data Preservation and Dissemination

Factom data structures (Directory Blocks, Entry Blocks, Entries) are needed for Factom to be
useful. They are public and will be preserved in two places. The Authority Servers need to
maintain this data to make correct decisions about adding new Entries. Since they have this
data, they can provide it as a service, as part of being a full node. As the protocol grows the
protocol will be able to support partial nodes, which share only part of the Factom dataset. The
partial nodes could share only the data which is relevant to their specific application. Peer
discovery for the partial nodes may be handled by any sort of directory service, such as a
Distributed Hash Table (DHT).

16

This setup allows for efficient peer distribution of data even if the entire Factom dataset grows to
unwieldy sizes. The Directory Service also allows the data to be preserved independent of any
Authority servers or full nodes. Even if all the full nodes were removed from the network, the
data could still be shared by a more numerous set of parties interested in specific subsets of the
data.

17

A Deeper Discussion of Factom

How to Name Factom Chains

Factom groups all Entries under a ChainID. The ChainID is computed from a Chain Name. The
ChainID is a hash of the Chain Name. The Chain Name is a byte array arbitrarily long in length.
See figure below. Since the conversion from Chain Name to ChainID is a hash operation, it is a
simple process. Deriving a Chain Name from a ChainID is not simple, so a lookup table would
be needed.

The user must provide a Chain Name, so that the ChainID can be shown to be a hash of
something. This prevents unhashed data from being a ChainID, which is stored all the way up to
the Directory Blocks. This convention eliminates insertion of obscene plaintext in the block
structure.

The Chain Name is fairly arbitrary. It could be a random number, a string of text, or a public key.
An individual Application could derive meaning from different Chain Names.

One possible convention would be to use human readable text for the Chain Name. This would
allow for the structuring of Chains in a logical hierarchy, even though Chains are not hierarchical
by nature. Users can even use the same naming conventions, but by making simple
modifications, ensure that there are no accidental intersections between their Chains and other
Chains. Consider the following path:

MyFavoriteApp/bin

Where the slash is a convention for another level of hierarchy. The slash separating ASCII
strings “ MyFavoriteApp ” and “ bin ” represents transitioning to a deeper level. These two
strings must be converted to bytes, and there are many options for doing so. The strings could
be encoded in UTF-16, UTF-32, ASCII, or even something like IBM’s EPCDIC . Each of these
encodings would result in entirely different ChainIDs for the same string, since the computation
of the ChainID is done from the bytes. Furthermore, the application could utilize a Globally
Unique IDentifier (GUID) number as the first byte array in their naming convention. This would
eliminate overlap of one Application’s ChainID “space” with another, at the expense of just a few
more bytes in the Chain creation.

18

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Globally_unique_identifier

Using Factoids to Purchase Entry Credits

Factoids are the main internal scarcity token used to moderate and reward the system actors.
The right to put Entries into Factom is represented by Entry Credits. Factom separates the two
value-holding mechanisms, as they serve different purposes. Factoids can be converted into
Entry Credits, but not vice versa.

Factoids are implemented in much the same way Bitcoin is implemented, allowing multiple
inputs, multiple outputs, etc. where each input requires the proper signature for the transaction
to be valid. Other sorts of validation including multisig is possible. Factoid transactions are
managed on a special Factoid Chain. This Factoid Chain is handled more restrictively than other
Chains. Entries in the Factoid Chain must be valid Factoid transactions, or the Factom Servers
will reject the Entries.

Factoids are included into the protocol to completely decentralize Factom, and to reduce bloat
and spam in both Factom and Bitcoin. Factoids can be converted to Entry Credits in the
protocol, and paid out to Factom servers from the protocol. Factoids budgeted but not paid out
can remain in a “grant pool”. These tokens can be issued to support and develop the protocol
from the protocol.

Factoids also help to bind consensus. If consensus is lost, then the Factoids will fall in value,
incentivizing the support of the protocol.

The conversion of a Factoid to Entry Credits will be done via a special purchase transaction on
the Factoid Chain. This purchase transaction will include:

● An Output directing a Factoid amount to be converted
● The public key that is to receive the Entry Credits

The Entry Credits, once purchased, cannot be transferred to another public key. They can only
be used to pay for Entries. This greatly reduces their value to thieves, since they cannot be
resold. Entry Credit private keys can be held in low security areas with minimal risk.

19

Using Entry Credits to Write Entries

Adding Entries into Factom requires giving up a scarce resource. That resource is Entry Credits,
which are derived from Factoids. Adding Entries to Factom is a two step process. First the Entry
is paid for (committed). The payment accomplishes two things. It decrements the Entry Credits
associated with a user's public key. In the same operation, the hash of the Entry is specified.
After the Entry is paid for, the server will wait for the unhashed Entry and include it once seen
(revealed).

1. Pay for Entry
○ Decrement Entry Credits owned by a user
○ User specifies hash of Entry in payment

2. Insert Entry
○ User publishes Entry for inclusion in Entry Block

There are many benefits of this two step process. One benefit is to separate the payment
overhead from the recorded data. Future users will not be forced to download the data
generated by payment minutia. They only need to download the minimum data to validate their
system. It allows users to safely and easily ignore the payment information.

Another benefit is censorship resistance. By committing to accept an Entry before knowing the
content makes censorship by the Factom servers obvious. Adam Back has advocated for a
similar mechanism for Bitcoin in a post titled " blind symmetric commitment for stronger
byzantine voting resilience ". If a user or Audit server can show an Entry which has been
properly been paid for, but none of the Federated servers are accepting it, then the censorship
is provable.

The transactions deducting Entry Credits will be recorded in a special Chain, similar to the
Factoid Chain. The Federated servers will only fill the Chain with valid Entry Credit transactions.

Setting the Cost of Entries with a Central Server Oracle

The conversion rate of Factoids to Entry Credits will be determined by first choosing a target
real world value for an Entry Credit. This target will be determined by a distributed and
autonomous process. At minimum it will be agreed upon by some process driven by the
Authority Set. Other parties might be involved through various auditable processes in Factom to
further decentralize the decision.

Once a target real world target price of an Entry Credit has been chosen, an Oracle is required
to record into Factom the conversion value between Factoids and that EC price. That
specification and implementation will also go through a decentralized decision process.

20

https://bitcointalk.org/index.php?topic=206303.0
https://bitcointalk.org/index.php?topic=206303.0

The actual implementation of the target price, oracle implementation, and exchange rate
adjustment can vary widely, but will be optimized for decentralization, security, and regulatory
compliance.

Note that fee calculations and rates are subject to change, and don’t materially impact the utility
of the Factom protocol.

Using Factom without Factoids

Many users of Factom may not want a wallet, and will not want to hold any cryptocurrency
asset. But they will want to create their Chains (ledgers) and add their Entries. Factom’s two
step recording process allows for the separation of Factoids, Factom’s tradable token, from the
opportunity to post Entries to Factom, represented by Entry Credits. Servers and other
recipients of Factom Tokens can sell Entry Credits to customers for payment via Bitcoin,
conventional credit card payments, etc. The user would provide a public key to hold the Entry
Credits. The seller would convert the appropriate amount of Factoids to Entry Credits and
assign those rights to the user’s public key. Users could thus buy Entries Credits for Factom
without ever owning the Factoids that drive the Factom servers.

From a regulation point of view, this is powerful. The servers earn Factoids from the protocol.
The only parties to that transaction are the server and the protocol. Then the server sells Entry
Credits to users, who eventually return Factoids to the rest of the system. Entry Credits are non
transferable, so the user cannot assign them to another user’s public key, and selling private
keys isn’t practical or useful. In neither transaction is a tradable token (the Factoid) transferred
between two parties.

21

Conclusion

Factom is a distributed, autonomous layer residing on top of the Bitcoin blockchain. The goal of
Factom is to provide the power of Bitcoin’s blockchain to a nearly unlimited range of
Applications and uses. Further, Factom is architected such that its users do not need any
cryptocurrency whatsoever.

A distributed, immutable ledger is the radical, foundational, and unprecedented technology
represented by the Bitcoin blockchain. The dream of many is to extend the honesty inherent to
an immutable ledger validated by math to chaotic, real-world interactions. By allowing the
construction of unbounded ledgers backed by the blockchain, Factom extends the benefits of
the blockchain to the real world.

22

Bibliography

“Bitcoin: A Peer-to-Peer Electronic Cash System” Nakamoto, Satoshi. Web. 16 Nov. 2014
https://bitcoin.org/bitcoin.pdf

"Can Blocks Remain Capped to 1MB Forever?" Transactions. Web. 15 Nov. 2014.
http://bitcoin.stackexchange.com/questions/18101/can-blocks-remain-capped-to-1mb-forever

"Thin Client Security." - Bitcoin . Web. 15 Nov. 2014.
https://en.bitcoin.it/wiki/Thin_Client_Security#Simplified_Payment_Verification_.28SPV.29

"Evidence of Absence." Wikipedia. Wikimedia Foundation, 11 July 2014. Web. 15 Nov. 2014.
http://en.wikipedia.org/wiki/Evidence_of_absence

"Recording (real Estate)." Wikipedia. Wikimedia Foundation, 14 Nov. 2014. Web. 15 Nov. 2014.
http://en.wikipedia.org/wiki/Recording_(real_estate)

"Secure Property Titles with Owner Authority." Secure Property Titles with Owner Authority.
Web. 15 Nov. 2014. http://szabo.best.vwh.net/securetitle.html

"Patent US4309569 - Method of Providing Digital Signatures." Google Books. Web. 15 Nov.
2014. http://www.google.com/patents/US4309569

"Block Timestamp." - Bitcoin. Web. 15 Nov. 2014. https://en.bitcoin.it/wiki/Block_timestamp

"OP_RETURN and the Future of Bitcoin." - Bitzuma. Web. 15 Nov. 2014.
http://bitzuma.com/posts/op-return-and-the-future-of-bitcoin/

"Goblin/chronobit." GitHub. Web. 15 Nov. 2014. https://github.com/goblin/chronobit

"How Can One Embed Custom Data in Block Headers?" Mining. Web. 15 Nov. 2014.
http://bitcoin.stackexchange.com/questions/18/how-can-one-embed-custom-data-in-block-head
ers

"Headers-First Synchronization Coming Soon to Bitcoin Core - CryptoCoinsNews."
CryptoCoinsNews. Web. 15 Nov. 2014.
https://www.cryptocoinsnews.com/headers-first-synchronization-coming-soon-bitcoin-core/

“Enabling Blockchain Innovations with Pegged Sidechains - Block Stream ” Web. 15 Nov. 2014.
http://www.blockstream.com/sidechains.pdf

23

https://bitcoin.org/bitcoin.pdf
http://bitcoin.stackexchange.com/questions/18101/can-blocks-remain-capped-to-1mb-forever
https://en.bitcoin.it/wiki/Thin_Client_Security#Simplified_Payment_Verification_.28SPV.29
http://en.wikipedia.org/wiki/Evidence_of_absence
http://en.wikipedia.org/wiki/Recording_(real_estate)
http://szabo.best.vwh.net/securetitle.html
http://www.google.com/patents/US4309569
https://en.bitcoin.it/wiki/Block_timestamp
http://bitzuma.com/posts/op-return-and-the-future-of-bitcoin/
https://github.com/goblin/chronobit
http://bitcoin.stackexchange.com/questions/18/how-can-one-embed-custom-data-in-block-headers
http://bitcoin.stackexchange.com/questions/18/how-can-one-embed-custom-data-in-block-headers
https://www.cryptocoinsnews.com/headers-first-synchronization-coming-soon-bitcoin-core/
http://www.blockstream.com/sidechains.pdf

"[Bitcoin-development] 2-way pegging (Re: is there a way to do bitcoin-staging?)" / Mailing Lists.
Web. 27 May. 2014. http://sourceforge.net/p/bitcoin/mailman/message/32108143/.

"Could the Bitcoin Network Be Used as an Ultrasecure Notary Service?" Computerworld.
Accessed 27 May. 2014.
http://www.computerworld.com/s/article/9239513/Could_the_Bitcoin_network_be_used_as_an_
ultrasecure_Notary_service_.

"Proof of Existence." Proof of Existence. Web. 27 May. 2014. http://www.proofofexistence.com/.

"Virtual-Notary." Virtual-Notary. Web. May 27. 2014. http://virtual-notary.org/ .

“Commitment Scheme” Web. 16 November. 2014.
http://en.wikipedia.org/wiki/Commitment_scheme

“Foundations of Cryptography: Volume 1, Basic Tools, (draft available from author’s site).”
Cambridge University Press. ISBN 0-521-79172-3. 16 November. 2014. (see also
http://www.wisdom.weizmann.ac.il/~oded/foc-book.html) :224

“Real-World Sybil Attacks in BitTorrent Mainline DHT Wang Liang. Jussi Kangasharju. University
of Helsinki. Web. 17 Nov. 2014. http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf

“Sybil-resident DHT routing” University of Cambridge. Danezis George. Chris Lesniewski-Laas.
Kaashoek M. Frans. Anderson Ross. Web. 17 Nov. 2014 .
https://www.cl.cam.ac.uk/~rja14/Papers/sybildht.pdf

“A Sybil-proof one-drop DHT” Lesniewski-Laas Chris. Web. 17 Nov. 2014 .
http://pdos.csail.mit.edu/papers/sybil-dht-socialnets08.pdf

“Art Provenance: What It Is and How to Verify It” Web. 17 Nov. 2014.
http://www.artbusiness.com/provwarn.html

“Equine Appraisal: The Value of our Horses” Web. 17 Nov. 2014 .
http://www.hgexperts.com/article.asp?id=7366

“Proof of work” Web. 17 Nov. 2014 .
https://en.bitcoin.it/wiki/Proof_of_work

“Why one time passwords using nested hash chain are not used” Web. 17 Nov. 2014 .
http://security.stackexchange.com/questions/35135/why-one-time-passwords-using-nested-has
h-chain-are-not-used

”Proving Your Bitcoin Reserves” Web. 17 Nov. 2014 .

24

http://sourceforge.net/p/bitcoin/mailman/message/32108143/
http://www.computerworld.com/s/article/9239513/Could_the_Bitcoin_network_be_used_as_an_ultrasecure_Notary_service_.
http://www.computerworld.com/s/article/9239513/Could_the_Bitcoin_network_be_used_as_an_ultrasecure_Notary_service_.
http://www.proofofexistence.com/
http://virtual-notary.org/
http://en.wikipedia.org/wiki/Commitment_scheme
http://www.wisdom.weizmann.ac.il/~oded/foc-book.html
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/sybildht.pdf
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
http://pdos.csail.mit.edu/papers/sybil-dht-socialnets08.pdf
http://www.artbusiness.com/provwarn.html
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
http://www.hgexperts.com/article.asp?id=7366
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
https://en.bitcoin.it/wiki/Proof_of_work
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
http://security.stackexchange.com/questions/35135/why-one-time-passwords-using-nested-hash-chain-are-not-used
http://security.stackexchange.com/questions/35135/why-one-time-passwords-using-nested-hash-chain-are-not-used
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf

https://iwilcox.me.uk/2014/proving-bitcoin-reserves

“Distributed Consensus from Proof of Stake is Impossible” Web. 17 Nov. 2014.
https://download.wpsoftware.net/bitcoin/pos.pdf

25

https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://download.wpsoftware.net/bitcoin/pos.pdf

Appendix 1: Audit Application Examples: What Could Be Useful
Today?

How to Create Useful Applications Today Using the Factom Protocol

‘Application’ is a generic term for user-side software that reads from and/or writes to the Factom
system. It could be software with a human interface, or could be completely automated. The
Application is interested in the data organized by the Chains it needs.

Applications are possibly Distributed Applications (DApps) interacting with Factom to provide
additional services. For example, one might imagine a trading engine that processes
transactions very fast, with very accurate timestamping. Such an Application may nonetheless
stream transactions out into Factom chains to document and secure the ledger for the engine.
Such a mechanism could provide real-time cryptographic proof of process, of reserves, and of
communications.

Let us explore two separate applications that could have immediate demand in the current
Bitcoin ecosystem.

Let us see how to implement a secure and distributed log platform. Log analysis is a complex
task. Additionally, logs tend to be easily forgeable and also heterogeneous as they are produced
by each system independently and stored in a variety of media (files, databases, cloud services
etc.). With Factom and a few uniquely designed crypto-audit tools an entities log analysis can
become safer, simpler, and much more powerful. Let’s see this with an example. Suppose a
Bank (B), a Payment Provider (PP), and a Bitcoin company (BC) are interacting together as
follows:

1 - The User goes to the BC website and wants to buy some bitcoins
2 - He asks for a quote, which is valid for 5 minutes
3 - Then he is redirected to the PP website
4 - Then the PP connects with the B platform so that the money of the user account is debited
5 - B notifies PP that the user account has been debited
6 - PP notifies BC
7 - BC sends the bitcoins to the user

This is the normal scenario for many fixed-rate Bitcoin exchanges globally. But assume now that
for some reason the BC receives the payment notification 4 hours after the user transfers via the
PP. Who is faulty? The User? The Bank? The Payment Provider? What if a similar payment
problem happened for hundreds or thousands of payments over a period of days or weeks
before the issue was identified and resolved? Who is “provably” liable for those loses/damages?

26

With current techniques a manual auditing of logs would be necessary and would probably
require legal authorizations. With Factom and the right audit applications, it would be trivial to
detect where the problem came from, and also make the changing of records impossible
post-issue. Basically, every system (BB, PP, BC) will publish their relevant traces in the secure
broadcast channel (Factom) in real time.

Here’s another example of how Factom will be useful for Bitcoin exchanges audits. The
so-called “Proof of Solvency” method for conducting Bitcoin exchange audits is a growing and
important trend. However, there are significant weaknesses to this approach only solved by
having the Factom secure broadcast channel functioning properly.

In the Merkle tree approach for Solvency Proofs suggested by the Maxwell-Todd proposal , users
must manually report that their balances (user’s leaf) have been correctly incorporated in the
liability declaration of the Financial Institution (FI) (the Merkle hash of the FI’s database of user
balances). The proposed solution works if enough users verify that their account was included in
the tree, and in a case where their account is not included, it’s assumed that this instance would
be reported. One potential risk with this process is that an exchange database owner could
produce a hash that is not the true representation of the database at all; the exchange hashes
an incomplete database which would reduce its apparent liabilities to customers, thereby
making them appear solvent to a verifying party. Here are some scenarios where a fraudulent
exchange could easily exclude accounts:

● “Colluding Whales” Attack: There is evidence that large Bitcoin traders are operating on
various exchanges and moving markets significantly. Such traders need to have capital
reserves at the largest exchanges to quickly execute orders. Often, traders choose
exchanges that they “trust”. In this way they can be assured that should a hack or
liquidity issue arise, they have priority to get their money out first. In this case, the
exchange and trader could collude to remove the whales account balance from the
database before it’s hashed. An exchange’s top 10 whales could easily represent 5 to
20% of an exchanges liabilities, so colluding with just a few of them could have a
significant impact.

● “Site Manipulation” Attack: To date, each Proof of Solvency audit has reported (the hash

tree) on the institution’s website. This gives no guarantee at all to users, since a
malicious exchange could publish different states/balances to different groups of users,
or retroactively change the state. Thus it is fundamental to publish this data through
Factom’s secure broadcast channel, and publish it frequently.

The second attack is obviously solved by using Factom, while the first is not so obvious. As this
paper doesn’t focus on the mechanics of exchanges audits, we won’t delve in the nitty-gritty
details. However, the basic concept is that by having frequent time-stamped copies of the
exchanges database Merkle hash, one could detect the inclusion or exclusive of large balances
before or after audits. Then, the auditor could simply look into those large inclusions or

27

https://iwilcox.me.uk/2014/proving-bitcoin-reserves

exclusions, manually. Remember, the trader will ultimately need to get his money on or off the
exchange at some point, and that’ll show up in either the bank history or the Bitcoin transfer
history.

There are established process for detecting such fraudulent tactics in the traditional audit
industry; however, it all starts with having accurate, verifiable, immutable time-series of the
information in question.

28

Appendix 2: Attacks on Factom

Denial of Service from Spam

Since Factom is an open system, any user can put Entries into almost any Chain. Bitcoin has a
similar phenomenon . In order for an Application to reject those transactions, the Application
would first need to download and process them. A large number of bogus Entries could slow
down the initial processing of the Application’s transactions. This threat is mitigated by an
attacker needing to spend money (resources) to carry it out. This is similar to Adam Back’s
Hashcash solution to email spam.

Audits are another useful tool against spam, if the application is willing to trade off security
versus convenience. Auditors could post “ignore” lists on the same chain, or create their own
audit chains with those lists. An auditor could use a profile chain to develop their reputation,
which would also allow review by other auditors. If any auditor made a bad call, it would be
easily verifiable and the record of it would be permanent. Some validity processing is gray, in the
sense that opinions may vary. Solving that problem would be implementation specific.

Sybil Attack of the DHT

Distributed Hash Tables in general are particularly susceptible to sybil attacks. An attacker could
create many peers which make it difficult for honest nodes to communicate. In a simplistic DHT
architecture, attackers can isolate a required piece of data from honest nodes. Sybil attacks
have been observed on the BitTorrent network routing table. The paper “ Real-World Sybil
Attacks in BitTorrent Mainline DHT ” detail these attacks. Fighting this type of attack is an active
topic in academic research. One mitigation technique uses complex lookup techniques to find
honest nodes among the sybils, studied in “ Sybil-resistant DHT routing ”. Some sybil mitigation
techniques rely on a web-of-trust by adding a social network to the routing table, as explored in
“ A Sybil-proof one-hop DHT ”. Factom will rely on the latest academic and open-source research
in this topic to secure its DHT.

Dictionary Attack
In this case, the attacker runs through all the Chain Names deemed to be possible or desirable
and creates their ChainIDs, and the hashes of those ChainIDs. Then they watch for someone
trying to create those Chains.

Now the attacker can front run on a match. Because on a match, they know the ChainID, so
they can construct a proper, but malicious Entry of their own, create the proper Chain payment
and submit it rather than the users payment.

29

http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.hashcash.org/
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
http://www.cs.helsinki.fi/u/lxwang/publications/security.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/sybildht.pdf
http://pdos.csail.mit.edu/papers/sybil-dht-socialnets08.pdf

If the attacker gets ahead of the user, then they will win. The defense against a dictionary attack
is to avoid common name spaces and to submit your payment to multiple, long standing nodes
in the network.

In Factom, the flexibility of defining the Chain namespace makes efforts to hog the namespace
ineffective.

Fraudulent Servers
All Entries in Factom require signatures from the users, or must match a hash that has been
signed by the users. This means that fraudulent Federated servers in the Federation pool have
very limited attacks they can make on the protocol. Invalid Entries do not validate, and upon
broadcasting an invalid Entry, the honest Federated Servers will immediately broadcast a Server
Fault Message (SFM) on the fraudulent server. If a majority detect a fault, the faulty server is
removed. As long as the majority do not collude, then the protocol will remain honest. Any
Federated server that failed detect the fault likewise risks losing its support from Factom users,
and dropping from the Federated server pool.

Federated servers can delay recording of Entry payments. But because Entry payments are
submitted via a distributed set of Factom Nodes, delaying of Entry payments will be noted.
Users may withdraw support from servers without reasonable performance compared to the rest
of the network.

Federated servers can delay the recording of Entries. Here the payment is accepted (generally
by another server) fairly quickly. But for one reason or another, a Federated server refuses to
record the Entry. In the next minute, responsibility for that Chain will shift to another server. As
long as most servers are honest, the Entry will be recorded. Then the data over time will show
that a server is delaying Entries. This will cause them potentially to lose support.

Federated servers can at any point send false messages. The other Federated servers then
would issue a SFR on the on the rogue server when those messages didn’t make sense. A
majority of the servers issuing an SFR would boot the rogue server, then the network would
ignore their messages and not forward them on.

Federated servers can refuse to accept valid Entry payment messages based on the public
address, under the assumption that the public address is associated with some party. Again,
assuming a majority of servers are honest, the payment will be accepted when the control shifts
to an honest server. Furthermore, nodes watching will see the delay, and perhaps a pattern of
delays, and support will be lost for the misbehaving servers.

30

Appendix 3: Timestamping into Bitcoin

How the Factom Timestamping Mechanism Secures Transactions in the Blockchain

Factom data is timestamped and made irreversible by the Bitcoin network. A user's data is as
secure as any other Bitcoin transaction, once published to the Bitcoin blockchain. A compact
proof of publication is possible for any data entered into the Factom system.

Data is organized into block structures, the highest level being Directory Blocks, which are
created using Merkle trees . Every 10 minutes, the data set is frozen and submitted to the Bitcoin
network. Since Bitcoin has an unpredictable block time, there may be more or fewer than one
Factom timestamp per Bitcoin block.

Bitcoin internal header block times themselves have a fluid idea of time. They have a 2 hour
possible drift from reality. Factom will provide its own internal timestamps, adhering with
standard time systems.

The user data ordering will be assigned when received at the Federated servers. Factom
organizes the submitted Entry references into sets of blocks. The block time for Factom is ten
minutes. On closing, the Federated Server network generates consensus and the Entries that
are part of that block structure are timestamped to a minute within the block.

As a general note, the data could have existed long before it was timestamped. An Application
running on top of Factom could provide finer and more accurate timestamping services prior to
Entries being recorded in Factom. The Factom timestamp only proves the data did not originate
after the Factom timestamp.

31

http://en.wikipedia.org/wiki/Merkle_tree
https://en.bitcoin.it/wiki/Block_timestamp
https://en.bitcoin.it/wiki/Block_timestamp

The Merkle root of the Directory Block is entered into the Bitcoin blockchain with a spending
transaction. The spend includes an output with an OP_RETURN . We refer to this as “anchoring”
the Directory Block to the Bitcoin blockchain. This method is the least damaging to the Bitcoin
network of the various ways to timestamp data.

Two possible alternatives to the OP_RETURN data in the blockchain is anchored to the P2Pool
headers (as in chronobit) or in the Bitcoin block header coinbase . The P2Pool headers would
require several hours of mining to find a block which satisfies the P2Pool rules, and the added
complexity to the Factom protocol would not be worth the benefits. Including the Merkle root into
the coinbase of a block would require cooperation with miners, above and beyond the
transaction processing they are already doing. The coinbase entry would still need to have a
crypto signature from the Factom system, so would not save on much space relative to a signed
transaction.

The first two bytes of the available 40 in the anchor will be a designator tag (2 bytes with the
value “Fa”). The Factom anchor (32 bytes) is concatenated onto the tag, then the block height is
added (up to 6 bytes, allowing for >500,000 years). The designator tag indicates the transaction
could be a Factom anchor. Other qualifiers are required, but the tag and Factom block height
eliminates most of the OP_RETURN transactions that would otherwise need to be inspected.

The block height in the OP_RETURN helps to fix the order in those cases where the Bitcoin
blockchain records the anchors out of order.

The anchored data is the Merkle root of list containing the Directory Block’s Merkle root.
Querying a database or DHT for the anchored data will return the Directory Block which can be
used to find the rest of the data in the block.

The Merkle root timestamp will be entered into the Bitcoin blockchain by one of the Federated
servers. The server delegated to timestamp the federation’s collected data creates a Bitcoin
transaction. The transaction will be broadcast to the Bitcoin network, and be included in a
Bitcoin block. Bitcoin transactions that look like a Factom anchor, but are not spent from an
address known as a Factom server would either be junk, or an attempt to fork Factom. Most
users/applications would ignore such anchors.

Bitcoin blocks are generated with a statistical process, and as such their timing cannot be
predicted. This means that the anchors are only roughly time-bound by the OP_RETURNs
inserted into the Bitcoin blockchain, and its timestamping mechanism. The real value of
anchoring Factom to Bitcoin is to prevent anyone from generating false Factom histories. Due to
bad luck of Bitcoin miners, or delayed inclusion of Factom transactions, the time between when
the Factom state is frozen for a particular 10 minute period and when the anchor appears in
Bitcoin can vary, perhaps significantly.

32

http://bitzuma.com/posts/op-return-and-the-future-of-bitcoin/
https://bitcointalk.org/index.php?topic=139443.msg1485926#msg1485926
https://github.com/goblin/chronobit
http://bitcoin.stackexchange.com/questions/18/how-can-one-embed-custom-data-in-block-headers

The Ramifications of Federated Servers and Anchoring vs Proof of Work

Proof of Work (PoW) is optimized for permissionless participation and validation of the historical
record of a blockchain. The typical implementation of Proof of Work is to repeatedly hash blocks
until one of the parties mining finds a hash with the difficulty required by the current
requirements of a blockchain. This allows anyone to serve as a miner, to collect and validate
transactions, pack them into blocks, and repeatedly hash that block looking for a solution that
meets the difficulty requirement.

The shortcomings of PoW have been widely discussed in the media as requiring unnecessary
amounts of power, when other sorts of problem solving and work could result in benefits to
blockchain users, the ecosystem, and society. Such is the goal of various Proof of Stake (PoS)
systems used by various blockchains. But Proof of Stake alone makes the historical record
hard to validate, and does not work well for a data recording system like Factom. This is
because validating the historical Stake of parties involved the entire blockchain, and an
understanding of the Stake that existed at each point in time historically. Factom needs small
cryptographic proofs that validate sets of data, which PoW provides. Because PoW is validated
solely by evaluating the difficulty of a hash.

Anchoring is the solution Factom uses to secure the historical record, and at the same time
avoid duplicating the massive expenditure of resources required of mining. A system like PoS
can be used in the present, while anchoring secures the historical record. The idea of supporting
parties allows permissionless participation in the Factom protocol beyond that of the Authority
Set.

The Authority Set and Anchoring means that running the Authority Servers is less expensive in
resources by orders of magnitude compared to mining. Greater efficiency means that the
rewards paid out by the Factom protocol can do more for the ecosystem than pay very large
utility bills. Factom may use various voluntary but auditable methods to incentivize using the
efficiency of the authority set to set aside resources within the protocol for productive real world
work. A sort of Proof of Development could be used to receive these rewards using distributed
support to identify work to be done, and evaluate the quality of the work that results. Such a
system could provide rewards for development alongside the rewards generated for the
authority set.

A “Proof of Development” comes with its own issues. The main issue is the “Oracle Problem,”
where it is very hard to know from within the programming of a blockchain protocol what might
be useful development in the real-world and evaluate the quality of such development once it is
done. Factom may develop mechanisms to incentivize supporting parties in the protocol to
create evaluation processes, audit trails, and certifications at every stage of development to
address the Oracle Problem, and allow a self-correcting process to manage a viable “Proof of

33

Development” that is more productive and ecologically friendly than simply rewarding the
burning of energy resources for security.

34

Appendix 4: Comparing Factom with Other Blockchain Technologies

How Factom Differs from Bitcoin and Sidechains

Factom is very different from Bitcoin, and in fact very different from any current cryptocurrency
project.

Cryptocurrencies like Bitcoin implement a strict, distributed method for the validation of
transactions, where anyone can validate each transaction, and the validity of every input into a
transaction can be verified. Because each transaction is authorized via cryptographic proof, no
transaction can be forged. Each transaction can be checked for validity by verifying signatures
of each transaction, and the miners hold each other accountable for only including valid
transactions.

The Bitcoin protocol is transactionally complete. In other words, the creation and distribution of
Bitcoins through transactions is completely defined within the Bitcoin protocol. Transactions
(which specify movement of bitcoin) and block discovery (which move bitcoin via mining fees
and provide block rewards) are the only inputs into the Bitcoin Protocol, and nothing leaves the
Bitcoin Protocol. In other words, the 21 million bitcoins that will ultimately exist will always and
forever exist within the protocol. Pegged sidechains , when implemented, will provide additional
movement of bitcoin value outside the blockchain, while the pegged value is in stasis in the
blockchain.

The sidechains proposal describes a solution to increase the scalability of Bitcoin by allowing
value control to move off the blockchain and onto a sidechain. In the sidechain, many trades can
occur. Later, a cryptographic proof (not all the transactions in between) can be recorded in the
blockchain which moves the BTC out of stasis in Bitcoin. This proof would have to be available
to the Bitcoin miners, but the bulk of the transaction data would be left behind in the sidechain.

Factom is in some sense attempting to increase scalability, but not by enabling more value
transactions, but by moving non-BTC transactions off blockchain. This would be transactions
that are not primarily intended to transfer Bitcoin value. For example transactions could manage
domain name registrations, log security camera footage, track the provenance for art work, and
even establish the value of show horses by documenting their history. Some of these do not
move a value at all, like transactions establishing a proof of publication.

Sidechains and Factom are both trying to move transactions off the blockchain, but to achieve
similar ends via completely different mechanisms. At some point, Factom may integrate with a
Bitcoin sidechain in order to take advantage of the atomic swaps from BTC to Factoids.

35

http://www.blockstream.com/sidechains.pdf
http://www.artbusiness.com/provwarn.html
http://www.hgexperts.com/article.asp?id=7366

How Factom is Different from Other Blockchain Technologies

Many different groups are looking to find ways to leverage the Bitcoin approach for managing
other sorts of transactions besides tracking bitcoin balances. For example, the trading of assets
such as houses or cars can be done digitally using Bitcoin extensions. Even the trading of
commodities such as precious metals, futures, or securities might be done via clever encoding
and inserting of information into the Bitcoin blockchain.

Efforts to expand Bitcoin to cover these kinds of trades include Colored Coins, Mastercoin, and
Counterparty. Some developers choose to build their own cryptocurrency with a more flexible
protocol that can handle trades beyond currency. These include Namecoin, Ripple, Ethereum,
BitShares, NXT, and others.

Open Transactions (OT) uses Cryptographic signatures, signed receipts and proof of balance
for users (i.e., a user does not need the transaction history to prove their balance, just the last
receipt). In this way, OT can provide the spend of centralized servers without the risk of a
centralized server that can alter client balances. Factom is decentralized, and only records
Entries. So Factom can record data that would not meet OT’s rules. But Factom will not execute
at the rate OT can initially. Factom is distributed, and we expect that some, but not all users will
employ cryptographic techniques similar to OT with their records.

The great advantage to an independent platform over trying to build upon Bitcoin is found in
flexibility. The Bitcoin protocol isn’t optimized to allow for recording of arbitrary pieces of data, so
the “bookkeeping” necessary for non-Bitcoin type transactions isn’t necessarily supported by
Bitcoin. Furthermore, Bitcoin’s Proof of Work (PoW) based consensus method is not a “one size
fits all” solution, given that some transactions must resolve much faster than 10 minutes. Ripple
and Open Transactions vastly speed up confirmation times by changing the consensus method.

An Application built upon Factom seeks to gain the ability to track assets and implement
contracts, by leveraging the blockchain directly. Instead of inserting transactions into the
blockchain (viewed as “blockchain bloat” by many), Factom records its Entries within its own
structures. At the base level, Factom records what Chains have had Entries added to Factom
within the Directory Block time. Scanning these records, Applications can pick out the Chains in
which they are interested. Factom records each Chain independently, so Applications can then
pull the Chain data they need.

Factom is organized in a way that minimizes connections between user Chains. A Chain in
Factom can be validated without any of the information held in other, unrelated Chains. This
minimizes the information a Factom user has to maintain to validate the Chains they are
interested in.

36

Appendix 5: Proof of Stake Similarities

Factom Consensus Similarities and Differences from Proof of Stake

The policy and reward mechanism in Factom is similar to Proof of Stake (PoS). Factom differs
from most PoS systems in that many subsets of user stake and/or contribution may be
recognized. Individual categories of stake can be weighted against each other to further
decentralized Factom. This is an attempt to make the servers answerable to the users actively
using and contributing to the protocol. The individual users would delegate their support to a
server. The Federated servers with the top numbers of support would be responsible for coming
to consensus.

Some with a deep understand of Bitcoin have recognized that pure PoS consensus
mechanisms are fundamentally flawed . There are two attacks that make pure PoS unworkable.
The problems are referred to as "Stake Grinding" and "Nothing at Stake". Although Factom has
PoS elements, it does not suffer from these problems.

Stake Grinding

Stake Grinding is a problem where an attacker with a sizable (say 10%), but not majority share
can formulate false histories. From some point in history, they can costlessly fork the blockchain,
choosing to reorder past transactions such that their stake is always selected to create the
subsequent blocks. They would be able to present this alternate version of history as part of an
attack to steal value by double spending. Bitcoin solves this problem by strongly linking the
information domain, where computers make decisions, with the thermodynamic domain, where
humans burn energy. Considerable resources are expended in the thermodynamic domain, and
is provable in the information domain. Bitcoin makes forming false histories hugely expensive.

Factom is unable to create alternate histories after the fact, since it is unable to insert
transactions into historical Bitcoin blocks. It is also unable to create parallel histories without
being detected, since Factom is linked to Bitcoin with known Bitcoin private keys.

Nothing at Stake

The Nothing at Stake problem is more subtle. With a policy disagreement in Bitcoin, miners
must choose either one policy or the other. If they choose against the majority, they will be
burning lots of electricity without a chance of recouping costs. PoS miners do not face this
dilemma. They can hedge their bets and costlessly create forks complying with each side of the
policy. They would simultaneously agree with both sides of the disagreement. This would open

37

https://download.wpsoftware.net/bitcoin/pos.pdf

up the economy to double spend attacks. One of two merchants following different forks will
ultimately have that money becomes worthless.

Bitcoin solves this problem by having unintelligent unambiguous automatable rules for selecting
the correct fork. In Bitcoin, the correct fork is the one with the most Proof of Work (PoW).
Factom will also have unintelligent unambiguous automatable rules to select a correct fork,
should one arise.

38

