Temporal Innovation on the Blockchain

ChronoLogic

October 11, 2018
v2

Abstract

Current generation blockchains lack the crucial time-based functionality like
transaction scheduling. The proposed paper discusses potential implementable
solutions and challenges for enabling such a functionality.

Contents

1 Introduction

1.1 Centralized Scheduling
1.2 Decentralized Scheduling
2 Ethereum Alarm Clock
2.1 Architecture
2.1.1 Smart Contracts
2.1.2 TimeNode
2.2 Claiming Mechanism
2.3 Remote Providers oL
2.4 Mitigation Efforts
2.5 Recommendationo Lo
2.6 Cryptoeconomics o i
2.7 Limitations e
2.71 Gasprice
2.7.2 Account abstraction
273 Gascosto
2.8 Protocolfees
2.9 Multi-network protocol
2.10 DAY token
Chronos - Next generation scheduling protocol
3.1 Conditional scheduling
3.2 DAY token staking
Second Layer Execution Markets
4.1 Delegated execution L.
4.2 Execution marketo Lo
4.3 TimeNode - beyond the scheduling
Appendix A The on-chain claiming mechanism economics
A1 Claiming mechanism
A1l Claiming
A12 Execution

14
14
15

17
17
17
19

A.1.3 Expected payout definition

A.2 Simulation

Chapter 1

Introduction

Scheduling is a feature that is native to the modern financial world. We sched-
ule our routine bank transfers and bill payments; whenever we know ahead
of time when a payment should go through, we set up automatic payments
instead of waiting for the exact time and date. Financial transactions are in-
creasingly moving to the self-sovereign and trustless world of cryptocurrencies.
As more volume is moved on networks like Ethereum! daily, there are higher
expectations of the foundational tooling that fiat world provides. Users expect
scheduling transactions as a feature from the Ethereum ecosystem because they
have learned to rely on it in their everyday lives. In fact, scheduling calls on
Ethereum is more powerful than scheduling movements of money in the fiat
world — users can now schedule smart contracts execution. They have access
to much more complex logic. We also identify the tooling gap that exists for
developers working on the Ethereum stack, used to cron jobs on Unix. Contrary
to intuition, scheduling calls on a decentralized peer-to-peer blockchain is not a
trivial problem to solve.

There are many reasons why a person would want to schedule smart contract
calls. The most facile of use cases involves the simple scheduling of value trans-
fers — the movement of ether or an ERC20 token from one address to another.
With the future indoctrination of concepts such as DAOs?, the world will start
to see smart contracts employed in the use of organizational governance and
other high stakes uses. For instance, users may want to schedule a vote to a
DAO that will determine the zoning of the neighborhood they live in. Addi-
tionally, developers may invent new use cases in which scheduling is used under
the hood, without bothering the user with the complexity behind the applica-
tion that they are interacting with. Blockchains are the new software platform.
People who set up and maintain software environments use cron® to schedule
jobs (commands or shell scripts) to run periodically at fixed times, dates, or
intervals. There is a need for a cron in the world of Ethereum.

Ihttps://www.ethereum.org/
®https://en.wikipedia.org/wiki/Decentralized_autonomous_organization
Shttps://en.wikipedia.org/wiki/Cron

1.1 Centralized Scheduling

The Ethereum platform offers no native way to have a smart contract be called
at a specified time in the future, nor a way to make this call recurring. The
obvious need for this feature has led developers to create their own solutions.
In the (now deprecated) Parity UI* there was a built-in scheduling feature that
would locally hold the transaction in-memory before sending it at the desired
time. Although the solution worked fine, there were some major drawbacks
including 1) the necessity of the user to run their own local node and use the
specific Parity client software, and 2) the single point of failure experienced in
cases where the local node disconnected from the peer-to-peer network. These
multiple issues can actually be combined into one: centralization.

1.2 Decentralized Scheduling

The advantages of a decentralized protocol over a centralized one is that it
does not have a single point of failure. The scheduling aspect of the Ethereum
Alarm Clock® is done entirely through smart contracts running on Ethereum
in the backend and allows for permission-less implementations of user-friendly
front-ends ®. The execution aspect of the protocol is handled by a network of
off-chain clients known as TimeNodes. TimeNodes are incentivized to operate
by the user-set bounty payment, which can be thought of as a small reward
offered by the user to the TimeNode to compensate its expenses for monitoring
the state of Ethereum and keeping the network alive. The users do not have to
be aware of the existence of TimeNodes. They can pay the small premium of
the bounty without the need to understand the execution flow of the Ethereum
Alarm Clock protocol entirely.

‘https://github.com/paritytech/parity-ui

5The Ethereum Alarm Clock was created by Piper Merriam, now Lead of the Python team
at Ethereum, on August 26, 2015. Throughout its development history it was deployed to
the Ethereum network and maintained almost solely by a single developer. The adoption of
the protocol did not take off and after the 2016 DDoS attacks on the Ethereum network the
smart contracts started to fall out of date as Piper began pursuing new projects

6 Among two of the already implemented front-ends on the current iteration of the Ethereum
Alarm Clock are the ChronoLogic Chronos Dapp https://app.chronologic.network and a
native integration with the popular MyCrypto wallet https://mycrypto.com

Chapter 2

Ethereum Alarm Clock

In November 2017, nearly one year after the DDoS attacks that metaphori-
cally threw a ratchet in the Ethereum Alarm Clock’s gears, developers from the
ChronoLogic team began to work on and reboot the Ethereum Alarm Clock
protocol. After about nine months of work, including updating the core smart
contracts, rewriting the test suite in JavaScript for the Truffle framework, build-
ing developer libraries, constructing a new TimeNode client in TypeScript, per-
forming numerous internal audits and an external audit with a notable member
of the community, the ChronoLogic team deployed the 1.0.0 stable release of the
Ethereum Alarm Clock smart contracts on August 24, 2018. The following in-
formation will discuss the architecture, analyze the cryptoeconomic incentives,
and enumerate on some of the limitations found in the stable release.

2.1 Architecture

The Ethereum Alarm Clock architecture is best described in two symbiotic and
differential components. The first component of the Ethereum Alarm Clock
architecture are the smart contracts. They are deployed to the Ethereum main
chain and operate trustlessly. The second component is the TimeNode network.
TimeNodes are off-chain execution agents in charge of handling the logic of
executions.

2.1.1 Smart Contracts

The smart contracts of the Ethereum Alarm Clock can be thought of as con-
sisting mainly of three parts: RequestFactory, Schedulers (further divided
into the TimestampScheduler and BlockScheduler), and TransactionRequest-
Core. Within these three main sections of the architecture are numerous li-
braries that contain various pieces of the core logic and functionality. There are
nine library contracts, two top-level scheduler contracts, on contract for Re-
questFactory and one for TransactionRequestCore, adding in Zeppelin’s

Off-chain On-chain

een | SCHEDULED]
' TRANSACTION |
\\ //
N y
PRt Block 3
7 e h R
\
4 | I
| SCHEDULED “ Slock 2
"' TRANSACTION |
\ /
/
.) r
e Block 1

Figure 2.1: Ethereum Alarm Clock architecture overview

SafeMath and Ownable, brings the total to 15 smart contracts which make the
entire Ethereum Alarm Clock architecture.

The logic for the scheduled transactions exists on the TransactionRequest-
Core contract, which acts as the central library for the numerous instances of
the delegatecall! clone contracts that get deployed via the RequestFactory.
Below is shown the code example of the primary actions of the Transaction-
RequestCore, which allows TimeNodes to execute, cancel or claim a scheduled
transaction.

function execute() public returns (bool);
function cancel() public returns (bool);
function claim() public payable returns (bool);

The Schedulers (BlockScheduler.sol and TimestampScheduler.sol) are the
top level APIs which will get exposed to the user facing applications. These
contracts provide a simpler interface taking only the necessary parameters for
a scheduled transaction and setting the rest of the options to sane defaults.
The Scheduler contracts are also the objects which hold the data concerning

Thttps://github.com/ethereum/EIPs/issues/23

TRANSACTION
REQUEST CORE

Claim
Lib
Request Request
Schedule Meta
Lib Lib
Request
Lib
Schedule Grove
Lib Lib

Payment
Lib

|

Execution
Lib

Figure 2.2: Ethereum Alarm Clock smart contracts overview

the taking of fees. The purpose of separating the logic for taking fees into the
Scheduler contracts is to allow third-party developers and new integrations to
customize their fee structure (and fee destination) in their own preferred way.
Allowing the option for third party integration to customize their fee structures
creates an incentive for them to integrate the Ethereum Alarm Clock into their
own product. Each scheduler contracts works off the same RequestFactory
backend, benefiting from the same network of TimeNodes.

The RequestFactory contract is the core of the Ethereum Alarm Clock
protocol and deploys the new delegatecall clone contracts. It is possible to
call the Request Factory directly, but most of the time the Request Factory will
be called by an “internal transaction” from one of the Scheduler contracts. The
RequestFactory has two functions which perform different kinds of validation
of the parameters which are passed in. The lower level ‘createRequest () ¢ will

attempt the raw creation of a TransactionRequest without any validation.
By not performing the validation, the function call saves gas but may lead to
the possibility that the parameters contained an error and will not be executed
properly. For most use cases some validation of the input parameters is desired
and the ‘createValidatedRequest()‘ will be used instead. The Request-
Factory will also be the factory that TimeNodes watch in order to keep up to
date with scheduled transactions, since it emits the ‘RequestCreated‘ event
which alerts TimeNodes of user scheduled transactions.

2.1.2 TimeNode

TimeNodes are the off-chain execution agents which represent individual nodes
of the decentralized peer-to-peer execution network behind the Ethereum Alarm
Clock.

'
4

. TimeNode

TimeNode

¢
.

4

TimeNode

TimeNode

TimeNode

Figure 2.3: Ethereum Alarm Clock TimeNodes network

The first and primary TimeNode action is the execute function while the
second action is claim - which we’ll go into detail in the next section. Exe-
cute is called anytime a TimeNode tries to execute a transaction that has been
scheduled to be executed.

By executing a transaction, a TimeNode receives a reward (bounty). This
helps incentivize TimeNodes to execute incoming scheduled transactions.

The execute action is run by triggering a function within the smart contract
that holds the scheduled transaction. This trigger requires the TimeNode to
spend a small amount of gas to trigger this action.

A problem arises when multiple TimeNodes send the execute trigger at the
same time, i.e. within the same block. Only one of them will trigger the
execution, while the other TimeNode’s transaction will get reverted and cost a
small amount of gas.

Should a TimeNode notice that it often collides with other TimeNodes during
the execution time of scheduled transactions, it can choose to claim transactions.

2.2 Claiming Mechanism

Claiming is an advanced opt-in feature of the Ethereum Alarm Clock protocol
which helps TimeNodes lower the risk of transaction collisions.

When users schedule a transaction, this scheduled transaction appears on
the blockchain and TimeNodes keep track of them. Once it is scheduled, a
TimeNode can attempt to claim the scheduled transaction by depositing a small
amount of ETH.

Claiming transactions removes the risk of colliding with other TimeNodes
during the execution time, but brings forward another set of problems:

1. Transaction collisions - The same transaction collisions that used to hap-
pen on the execute function will now be a problem with the claim function.
There is a chance of multiple TimeNodes trying to claim the same trans-
action within the same block, which will again result in a transaction
collision and only one of those will be able to claim it.

2. Deposit loss - When a TimeNode claims a transaction it deposits a small
amount of ETH as a guarantee that it will be online to execute it when
the time is right. Should a TimeNode (due to unforeseen circumstances)
go offline at the exact time at which the scheduled transaction was due to
be executed, it will lose its deposit.

2.3 Remote Providers

The effect of sending the claim or execute actions for a scheduled transaction
can bring more risks, depending on whether a TimeNode is connected to a local
or a remote node.

Connecting the TimeNode to a remote provider can introduce delays due to
network conditions and can facilitate failed claims/executions. Running a local
RPC provider node would be the recommended way of running the TimeN-
ode to eliminate the risk of slow responses for the RPC requests made by the
TimeNode.

2.4 Mitigation Efforts

Efforts have been made to mitigate the risks mentioned above by introducing the
hasPending check to the timenode-core library. hasPending allows the TimeN-

odes to check the transaction pool (txpool) of the providers it is connected for
any incoming execute or claim actions on a certain scheduled transactions.
This allows the TimeNodes to avoid transaction collisions if they use a node
that has a txpool such as Parity or Geth. Keep in mind that RPC providers
without a txpool (e.g. Infura over HTTP) will not work with this feature.

2.5 Recommendation

In order to avoid the mentioned risks of running a TimeNode, we recommend
the following setup:

e Connect the TimeNode to a local Parity/Geth node
e Turn on claiming transactions

e Reliable internet connection - minimum offline time

These risks are currently unquantifiable and it is still not clear how the
network will behave in real world conditions.

2.6 Cryptoeconomics

The Ethereum Alarm Clock protocol incorporates cryptoeconomic incentives to
reward the decentralized network of TimeNodes to continue their operation. The
incentive consists of the extra amount of ether sent to the TimeNode following
an execution. The amount of the bounty is variable and depends on when the
transaction was claimed as well as how much extra gas was paid for the execution
of the transaction. As a general rule, TimeNodes will not execute transactions
which will return a net loss to their ETH balance. The formula for the bounty
calculation is provided below.

Btotal =P X Bset - (Gactual - Gset)

where P is payment modifier

Given that scheduled transactions are expected to be executed at the ex-
act time and the network of n competing nodes exists, we expect to face the
”swarming” problem which can be described as: uncoordinated attempts of ex-
ecution by n nodes at the same time. This problem may result in unnecessary
costs for TimeNodes, making the operations potentially not profitable as only
1-of-n is going to earn the TimeBounty for the execution. Other TimeNodes
trying to execute in the same block will still have to pay the transaction cost
of their failed transaction. By introducing the payment modifier P, TimeNode
operators are able to pick theirs profitability point. This effectively mitigates
the ”swarming” problem, as we expect TimeNodes to try to claim on different
blocks/moments of time. However, under perfect competition, the profitability
metric of the TimeNode trends towards a perfect zero, leading TimeNodes to
often send the claim transaction within the same block.

For detailed TimeNode economics refer to appendix A.

10

2.7 Limitations

2.7.1 Gas price

The Ethereum network uses the concept of gas as a unit of measuring the
computational work performed over the network. Every transaction broadcasted
to the network sets the gas limit and the gas price. Gas limit describes the
maximum amount of gas allowed to be consumed by the transaction, gas price
describes the amount of ether (ETH) you are willing to pay for each unit of gas.

While setting the gas limit is in most cases very straightforward and auto-
matic, setting the correct gas price is not a trivial task. Gas price determines
the time between broadcasting and block inclusion, and depends on current net-
work capacity. We observed many spikes in the gas price due to popular ICOs?,
CryptoKitties or last FCoin on-chain voting. Given the nature of scheduled
transactions, the Ethereum Alarm Clock protocol needs to handle the execu-
tion using a predicted gas price. The most important characteristics are:

e execution prioritization
e TimeNode withholding protection

There are three possible solution for this problem. Let’s analyze each of
them separately:

1. Fixzed gas price - Allows setting the exact gas price that has to be
used by TimeNode for execution, declared gas price is reimbursed by the
scheduler.

Pros:

e simple

e protects from TimeNode withholding
Cons:

e fails upon gas price spikes

e requires users to guess the price in the future

2. Range gas price - Allows setting minimum and maximum gas price by
the scheduler, the maximum gas price is reimbursed, any gas price used
by the TimeNode between min and max (spot price) will allow the split
of the remaining budget between the scheduler and the TimeNode.

For e.g, the scheduler sets the range from 20gwei to 100gwei and thus locks
enough funds to cover 100gwei * gas limit. TimeNode is incentivized to
pick a good price between 20 and 100, let’s say 50 as remaining 50 is split,
making TimeNode earn extra 25.

Pros:

®https://en.wikipedia.org/wiki/Initial_coin_offering

11

e protects from TimeNode withholding

e incentivize TimeNodes to pick correct price within bounds
Cons:

e given the front-running, the equilibrium is max

e requires a decently high max in order to cover the spikes

Minimum gas price - Allows setting the minimum gas price by the
scheduler, the minimum gas price is reimbursed, higher gas prices covered
by TimeNode (effectively reducing the reward for execution)

Pros:

e protects from TimeNode withholding

e allows the TimeNode to decide where equilibrium is
Cons:

e covers spikes up the minimum reimbursement + reward

In order to pick the right solution we need understand the Ethereum Alarm
Clock execution process. There are 3 different time windows used for:

e Pre-execution claiming process: where TimeNodes are bidding on

reservation for execution

e Reserved execution: time period for TimeNode that claimed transac-

tion

e FExecution: free for all execution, when TimeNode that claimed missed

the execution or no claiming happened

Minimum gas price is the best option for both reserved execution and execution,
as it allows the TimeNodes to control and pick the gas price that best fits their
own profit model.

2.7.2 Account abstraction

For cases where the address of the sender has to be known upfront, and given
the Ethereum Alarm Clock architecture where each scheduled transaction is
represented by separate smart contract with a unique Ethereum address, there
is a need to use a proxy wallet. The address of the proxy wallet will be seen
as msg.sender in the destination contract/account. An example procedure of
scheduling a transaction using a proxy wallet could be described as follows:

1.

Create a schedule request such that the destination is set to the proxy
wallet

. Send the scheduling request using a proxy wallet so that it becomes the

owner of the request

12

3. Whitelist the scheduled request in the proxy wallet so it can be relayed

The need for such a workaround will not be necessary when native account
abstraction 3 will be available on the Ethereum network.

2.7.3 Gas cost

Using the storage of a smart contract for keeping the data with conditions
and parameters for a scheduled transaction comes with a cost. Currently each
scheduled transaction costs approximately 500 000 gas. Even though the total
cost in USD is below $1%, the “premium” for scheduling is over 20x compared
to regular ETH transfers.

2.8 Protocol fees

A potential business model for the Ethereum Alarm Clock protocol is based
on the fee that can be enabled for each transaction. The architecture of the
protocol allows deployment of many Schedulers that can be used by specific
3rd party wallets. Each Scheduler can be deployed with a different fee setting.

2.9 Multi-network protocol

Ethereum Alarm Clock can be deployed to any EVM compatible Blockchain
like Ethereum Classic® or RSK®. Multi-network protocol can be handled by
TimeNodes by listening to those networks and providing execution. The wallets
of those TimeNodes would have to keep a native cryptocurrency used by those
blockchains in order to cover the transaction fees.

Multi-network deployment would expand the scheduling user base beyond
the Ethereum blockchain.

2.10 DAY token

Running the web” and desktop® versions of the TimeNode software requires
users to prove the ownership of 333 DAY? tokens. The required amount can
be held on any Ethereum account controlled by the TimeNode operator. Run-
ning the client using CLI tool'® does not require DAY tokens, however, when
compared to the CLI, the TimeNode is superior in its analytics and ease of use.

3https://github.com/ethereum/EIPs/issues/859
Given current 8.2Gwei gas price
Shttps://ethereumclassic.org/
Shttps://www.rsk.co/
"https://app.chronologic.network
8https://github.com/chronologic/eth-alarm-clock-dapp/releases
9ht‘cps ://etherscan.io/token/0xE814aeE960a85208C3dB542C53E7D4a6C8D5f60F
Ohttps://github.com/ethereum-alarm-clock/cli

13

Chapter 3

Chronos - Next generation
scheduling protocol

3.1 Conditional scheduling

Time-based scheduling is a very powerful idea, but it’s not capable of han-
dling if-this-then-that type of scheduling. The idea to explore this type of
scheduling was sparked by discussions with teams and projects in the Ethereum
space about potential use-cases for the Ethereum Alarm Clock. Some of them
were based on a state change, rather than a specific time period.

Let’s take a closer look at the example on how we could implement decen-
tralized stop-loss functionality using the Ethereum Alarm Clock. One of the
possible solutions for the problem that could be implemented can be defined as
follows:

e Create a smart contact called StopLoss with an execute function that is
going to check a decentralized exchange for your current position and will
place the sell order if certain conditions are met

e Use the Ethereum Alarm Clock protocol to create a scheduled transaction
with a recurring execution for execute - for e.g every bmin

While this solution works, it would generate an enormously high cost for the
users. Given 500000 gas, the daily cost is approximately

500000gas x 12 x 24 ~ $130!

making this unfeasible.

In general, the problem with this approach is that every trigger costs gas
regardless of whether it succeeds or not. A much more efficient solution for
this problem would be to have a scheduler that allows one to store conditions

1Given 1ETH = 221USD and GasPrice=4.1GWei

14

directly in the contract and allows the execution only when these conditions are
met.

Looking through that lens, we came to the conclusion that time-based schedul-
ing is just a special case of conditional scheduling. The conditions are: if time
then or if block then. TimeNodes (the off-chain executors) are checking time
and block conditions before the execution (by reading them from the smart con-
tract) which means that they attempt the sending of transactions only when
those conditions are met. Instead of defining time or block, we delegate this
check to external contracts that, for e.g has method inExecutionWindow(uint
windowStart, uint windowSize) returns (bool) which checks whether the
block.number is within the given window.

3.2 DAY token staking

Ethereum Alarm Clock protocol is using a claiming process in order to improve
cryptoeconomics by reducing collisions amongst the TimeNodes. For Chronos
protocol, a different approach to solve this problem is taken into account -
implementing a claiming mechanism based on DAY token staking.

Hypothetical staking model assumes that DAY tokens act as collateral for
claiming actions and align the incentives for execution. Any commitment by
the TimeNode would have to be backed by an amount of DAY tokens. Lack
of execution will result in token slashing. Whether complete stake or partial
slashing, it is still to be seen.

An example staking model called The Priority Queue can be described
as follows:

e Client running TimeNode software must first register their intent to be a
claiming TimeNode on the blockchain by sending a transaction contain-
ing some amount of tokens to a contract. Inside of this transaction, the
TimeNode specifies its preferences for what kinds of transactions it wants
to execute. These preferences include how big of a bounty is attached to
the ScheduledTransaction and when the execution window starts.

e Fach time a TimeNode enters the Claiming Queue the entry with the
highest amount staked is moved to the top of the queue while all other
entries are sorted downward.

e When a user wants to schedule a transaction, they send a transaction to
the Chronos Scheduler contract containing the data of the transaction
they would like executed at a later time (or when later conditionals return
true).

e The next TimeNode on the Claiming Queue which fits the preferences
of that TimeNode will be popped off the queue and “assigned” to that
transaction.

15

e Upon execution time, that TimeNode which was assigned has the exclusive
rights to send the execute transaction and the other TimeNodes will not
even try.

16

Chapter 4

Second Layer Execution
Markets

4.1 Delegated execution

Delegated execution in a pattern that is used by both Ethereum Alarm Clock,
Chronos and others!. On the high level, it enables safe transaction delegation
to 3rd party agents in exchange for a reward.

Executes
~- 7T~ Transaction

A . N (at requested time period)
, N
p \
\
!
SCHEDULED '
| TRANSACTION |
/
Scheduled A ’
Transaction \ ’
Address g > Bounty Payout

Figure 4.1: Delegated execution example

4.2 Execution market

Currently in the Ethereum ecosystem there are multiple projects working on
their own execution markets for their purpose. The drawback of this approach
is that the economic incentive to participate in such a market depends on the
amount of delegation available. Protocols and DApps? will scatter the market
into smaller ones, potentially not profitable to join.

The issues with the siloed markets are:

e Amount of nodes depends on the amount of bounties

1Gnosis Safe, uPort relayers...
®https://en.wikipedia.org/wiki/Decentralized_application

17

ETH:
ALARM REERLi\?égs DAPP X
cLOCK
RELAYER

Figure 4.2: Siloed relayers markets

e Reliability of the network depends on the amount of nodes

e Networks run by the protocol and DApps creators are subject to low
censorship resistance

The solution to this problem would be to conceptualize the common market,
so that it is able to handle multiple protocols and DApps.

ETH:
ALARM MIXIMUS

PROTOCOL
CLOCK

1

EXECUTION
MARKET

ERC-948

'S
w
N
-

DAPP DAPP DAPP DAPP

Figure 4.3: Common relayers markets

In order to design such a market, there are a few pre-conditions:

e Agree on interfaces for off-chain and on-chain representations (EIP-10773
and ERC-1228)

e Agree on bounties representation (ERC-1197°)

Shttps://eips.ethereum.org/EIPS/eip-1077
4https://github.com/ethereum/EIPs/issues/1228
Shttps://github.com/ethereum/EIPs/issues/1197

4.3 TimeNode - beyond the scheduling

TimeNode is one of very first working implementation of the delegated execution
pattern and could potentially serve as a blueprint for other implementations or
be generalized to handle other cases beyond scheduling.

19

Appendix A

The on-chain claiming
mechanism economics

A.1 Claiming mechanism

Claiming mechanism can be described as follows: For any transaction Tz that
has been deployed to the network and is expected to be executed by 1 of n nodes
in the network. The process of execution is divided into two steps: claiming
and execution. Claiming is a process of reserving the transaction for further
execution.

A.1.1 Claiming
e Can happen before execution

e Every node has the same chance to successfully claim Tz

Claiming requires a Deposit to be locked by claimant

Deposit is lost by claimant when execution won’t happen within ezxclusive
ezecution window

Every node can fail on claiming when Tx was already claimed

Exclusive

Claiming Idle o ecution

~ time/blocks

Execution

Figure A.1: Scheduled transaction life cycle

20

e Claiming requires sending a transaction that has a cost described as C.
when successful and C'y when unsuccessful

0 at beginning of claiming window

e Payment modifier P,,,q4(t) =
Y a(t) {1 at end of claiming window

e Claiming is optional

A.1.2 Execution

Successful execution has a reward described as T'imeBounty

e Execution cost is reimbursed by the scheduler when successful

Execution cost has cost described as C, when unsuccessful

Deposit locked by the claimant can be acquired by a node when the
claimant failed to execute T'x

A.1.3 Expected payout definition
Let’s define the expected payout for node as

P =P, +P;+ P,y
where
P; is the expected payout after a successful claim and execution
Py is the expected payout after a successful claim but missed execution

P, s is the expected payout after another node loses its deposit

Network with n = 1 nodes

For network of nodes with n = 1 we can define expected payouts as:
Ps(Pmod) = Proa X Tim@Boumfy -Cc

P; = —C¢c — Deposit
P,y = TimeBounty — C¢

21

Network with n > 1 nodes

For that case the expected reward will be w assuming that probability
of successful claiming is equal for all nodes. Also in case of failing transaction
node will pay the Cr,

Ppoq X TimeBounty — Ce

R@(Pmod) = n (TL - 1) X CTm
P; = —C¢c — Deposit
Poy = TimeBounty + Deposit (n—1) x Cra

n
In order to improve the cost of failing transactions, let’s introduce a mech-
anism X that prevents sending the transaction that will fail, the accuracy of
mechanism X is defined as Ax € [0;1]

Prioa X TimeBounty —
Pu(Ax, Pro) = 4 X TimeBounty — C¢o

" —(].—Ax)X(n—].)XCTm

Py = —C¢c — Deposit
TimeBounty + Deposit

Pnf(Ax): —(1—Ax) X(n—l)xCTz

n

The last part is to introduce P4 € [0;1] as probability of TimeNode loosing
the Deposit

P(Ax, P, Ppod) = Ps(Ax, Pmod) X (1 — Pig) + (Pf(Ax) + Pny(Ax)) X Piq

A.2 Simulation

We are going to simulate few cases using equation formulated in section A.1.3.
Ax, P, Ppoq are the variables that depends on reliability and running costs by
TimeNode owners. All calculated results are going to be represented as gas

Let’s now define the profitability threshold. We will assume monthly running
cost for the TimeNode is 7USD (this is based on current rates on Heroku cloud).
Translating 7USD to gas we get:

ETH/USD = 700USD
GasPrice = 10Gwet
7USD = 1000000gas

This shows us that running costs are covered after acquiring 1000000gas.

Now let’s take a look at how this translates to the amount of executed trans-
actions. In order to calculate P(Ax, Pg, Prmoq) We use the script listed below.

22

Moreover we are using following values describing TimeNode operations and
network conditions:

n~§

TimeBounty =~ 300000gas
Deposit ~ 600000gas

Ax ~ 0.95(95%)

Py~ 0.1(1%)

Cec =90000gas

Cry = 25000gas

target = 1000000gas or TUSD

Results using these parameters are:

p_mod res tx
15 0.70 1428.250 700
16 0.75 3178.094 314
17 0.80 4450.974 224
18 0.85 5951.569 168
19 0.90 7394.698 135
20 0.95 8980.225 111
21 1.00 10402.272 96

Results data frame contains 3 columns:
e p_mod - payment modifier (Pp,q)
e res - expected amount of gas earned by TimeNode per transaction

e num_of_tx - number of transactions to be executed in order to cover
running costs

The results achieved by running this simulation should be treated informa-
tional rather than something taken for granted. The expected payout depends
on all of the variables described above, for a simulation purpose we picked values
using our intuition.

The variable controlled by the TimeNode operator is P,,,q which is the
major component. Low enough P,,,q allows TimeNode to claim transaction
before others, still, in order to be profitable using low P,,,q, the TimeNode
running cost has to be low.

The TimeNode market has many characteristics of the perfect competition
market®: there is perfect information, no barriers to entry, they deliver the same
service, TimeNode are the price takers. Based on that, long-term we may get
in the situation where marginal cost is equal average cost.

Thttp://www.economicsonline.co.uk/Business_economics/Perfect_competition.html

23

